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Abstract—This paper tries to improve a balance control based
on the Capture Point (CP) control. First the characteristics of
the conventional balance controller are shown to be essentially
the same as the CP controller. Then we analyze the transfer
function of the balance controller. We introduce a new state
variable with the CP integration to the CP and the ZMP (Zero-
Moment Point) in order to trim a long term offset of the CP
and the ZMP. Verification of the proposed balance controller
is conducted through both simulation and experiments with a
humanoid robot HRP-2[11].

I. INTRODUCTION

Humanoid robots are expected to take over human’s work
in hazardous situations. The greatest hurdle is their mobile
ability, which is still poorer than humans. Considering the
above, the key technologies of biped locomotion are as
follows: how to walk faster, how to save walking energy,
and how to prevent a falling down. We give high priority to
the last one because falling may cause a fatal damage on a
robot.

There are various studies that have addressed this issue.
Nishiwaki et al. [1] applied a preview control for online
walking pattern generator to play the role of a long term
stabilizer. Choi et al. [2] presented a stability proof by using
the Lyapunov method for a balance control. Wieber [3]
proposed the integration scheme of the COG motion with
an adaptive footstep using Model Predictive Control under
the linear inequality constraints. Sugihara [4] evaluated the
stable pole of an inverted pendulum which maximizes the
stable standing region using a method similar to the CP.
Kajita et al. [5] proposed tracking control of a linear inverted
pendulum for stabilization of a biped walking which balance
controller is based on a state feedback of the COG and the
ZMP considering a ZMP lag. Its ZMP lag was compensated
in [6].

Pratt et al. [7] presented the Capture Point (CP) which
leads a motion of the COG (Center of Gravity) to a complete
stop. Takenaka et al. [8] had also focused on a divergent com-
ponent which is equivalent to the CP of an inverted pendulum
dynamics. A landing position is modified to prevent losing
a balance according to a divergent component as a result of
the model ZMP control which accelerates the upper body.
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(a) without CP integration
(conventional)

(b) with CP integration
(proposed)

Fig. 1. Posture error under presence of COG measurement error

Englsberger et al. [9] introduced two approaches for Capture
Point control as balance control.

This paper focuses on a balance control of biped walking
on uneven terrain. Under presence of the COG measurement
error, the large offset of the COG position remains as can be
seen in Fig.1. From a long-term point of view for a stable
walking, a biped locomotion with a larger offset is easier to
fall down. Thus, the CP integration is introduced to solve
this problem. We try to improve a balance controller based
on the similar type of the Capture Point control [9]. First
the characteristics of the conventional balance controller is
shown to be essentially the same as the CP controller. Then
we analyze the transfer function of the balance controller
in Sec.II. We introduce a new state variable that includes
CP integration into the CP and the ZMP for an elimination
of a long term offset of the CP and the ZMP in Sec.III.
The validity of the proposed balance controller is evaluated
through the simulations and the experiments in Sec.IV.

II. BALANCE CONTROL USING AN INVERTED PENDULUM
MODEL

A. Inverted Pendulum Model

With increasing walking speed, it is likely that the pro-
jected point of the center of gravity (COG) to the floor passes
through the outside of the support polygon. An inverted
pendulum model has been widely used for both the COG
walking motion and a balance control[1]-[12] in order to
reduce calculation costs. This paper also designs a balance
controller using an inverted pendulum as shown in Fig.2. To
control both the COG and the ZMP, differentiation of the
ZMP ṗx is set as input so that the state vector consists of
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Fig. 2. Inverted Pendulum Model

the COG and the ZMP.

d

dt

 x
ẋ
px

 =

 0 1 0
ω2 0 −ω2

0 0 0

 x
ẋ
px

+

 0
0
1

 ṗx, (1)

where ω is the natural frequency of the inverted pendulum
defined as

ω ≡

√
g + z̈

z − pz
.

The natural frequency ω is composed of the COG height
z and gravity constant g. The height of the ZMP position
pz is traversed between the supported soles as well as the
horizontal ZMP position. In this paper, the constant height of
the COG is used in order to catch the control characteritics
easily.

In our target humanoid robot HRP-2[11], elastic materials
are attatched below the force sensor on the ankle in order to
protect against a large impact force. We assume that the ZMP
dynamics can be represented as a first order lag with new
ZMP input pdx [5] which is approximated model as a force
control characteristics of sole in more inner control loop and
joint servo delay, and etc.

ṗx = −gppx + gpp
d
x (2)

From (1) and (2), the system with the ZMP lag can be
expressed as follows

d

dt

 x
ẋ
px

 =

 0 1 0
ω2 0 −ω2

0 0 −gp

 x
ẋ
px

+

 0
0
gp

 pdx (3)

B. COG and ZMP control

Let us consider to control both the COG and the ZMP.
The feedback controller for the target system with the ZMP
lag in (3) can be given as follows.

pdx = −kcz1 x− kcz2 ẋ− kcz3 px, (4)

where kcz1 ,kcz2 ,kcz3 are the feedback gains. The feedback gains
can be designed by the poles (α, β, γ < 0).

 kcz1
kcz2
kcz3

 =


αβγ+ω2(α+β+γ)

ω2gp

−αβ+βγ+γα+ω2

ω2gp

−α+β+γ+gp
gp

 (5)

Based on the best COG-ZMP regulator presented by
Sugihara[4], the stable pole of the inverted pendulum pro-
vides the maximum stable standing region. Therefore, one
of the poles γ is assigned to −ω:

 kcz1
kcz2
kcz3

 =


− (α−ω)(β−ω)

ωgp

− (α−ω)(β−ω)
ω2gp

−α+β+gp−ω
gp

. (6)

C. Capture Point and ZMP control

The Capture Point(CP) ξx is defined as a convergence
position of the COG at infinite time.

ξx = x+
ẋ

ω
(7)

The dynamics of the inverted pendulum can be represented
by both the CP ξx and the ZMP px.

ξ̇x = ẋ+
ẍ

ω
= ω(ξx − px) (8)

From (2) and (8), the system equation can be expressed
as:

d

dt

[
ξx
px

]
=

[
ω −ω
0 −gp

] [
ξx
px

]
+

[
0
gp

]
pdx (9)

The system in (9) also becomes controllable. The CP con-
troller is proposed by Englsberger[9] and, the CP controller
without the COG controller also could stabilize a biped robot.
In this method, the CP controller and the ZMP controller
were designed independently. We will design a balance
controller for the both of the CP and the ZMP to clearly
define the control performance. Here, let us consider the
following feedback controller:

pdx = −kcp1 ξx − kcp2 px, (10)

where kcp1 and kcp2 are the feedback gains. The relation
between these feedback gains and the pole becomes[

kcp1
kcp2

]
=

 − (α−ω)(β−ω)
ωgp

−α+β+gp−ω
gp

. (11)

By comparison of the COG-ZMP feedback gain in (6) with
the CP feedback gain in (11),

kcp1 = kcz1 = ωkcz2 ,

kcp2 = kcz3 ,

can be obviously found. Thus, the COG-ZMP controller in
(4) which one of the poles is assigned to a natural frequency
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Fig. 3. Tracking controller of linear inverted pendulum[5]

of the inverted pendulum, provides completely the same
output as the CP-ZMP controller.

pdx = −kcz1 x− kcz2 ẋ− kcz3 px,

= −kcp1

(
x+

ẋ

ω

)
− kcp2 px (12)

D. Characteritics of CP-ZMP controller

We suppose that a disturbance dx affects the ZMP input
of the system. The Capture Point (CP) dynamics under the
presence of a disturbance is represented as

ξ̇x = ẋ+
ẍ

ω
= ω(ξx − px + dx). (13)

In order to improve a tracking performance against the
desired trajectory, the tracking controller of a linear inverted
pendulum proposed by Kajita[5] is applied. In this method,
the controller compensates the state error and the feedforward
term of the ZMP is inserted to the output of the controller.
This block diagram of the tracking control system is shown
in Fig.3. We consider the state variables of the system in
(10) to determine the state errors of the CP and the ZMP.

∆pdx = −kcp1 (ξx − ξrefx )− kcp2 (px − prefx ) (14)

ξrefx and prefx are the desired CP and ZMP trajectories
respectively. The input to the system is generated from the
sum of the controller output ∆pdx and the desired ZMP
reference prefx .

pdx = prefx +∆pdx (15)

Then, control performance is analyzed in a frequency
domain. Applying the CP-ZMP controller in (14) into the
target system with the ZMP lag in (13), the transfer function
of the CP and the ZMP from the input to the output can be
derived by Laplace transformation.

Ξx(s) =
(α− ω)(β − ω)

(s− α)(s− β)
Ξref
x (s)

+
ω(α+ β − ω)

(s− α)(s− β)
P ref
x (s)

+
ω(s+ gp)

(s− α)(s− β)
Dx(s) (16)

Px(s) = −
(
s− ω

ω

)
Ξx(s) (17)
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Fig. 4. Step response by CP controller under presence of disturbance
for Pole assignment {α, β} = (top : {−1,−8}/bottom : {−4,−8}),
ω =

√
g/0.8, gp = 20 [x(0), ẋ(0), px(0)]T = [0.03, 0.03, 0]T as initial

value, ξrefx = prefx = 0.1 as references, dx = 0.05 as disturbance.

Where, Ξx(s) = L{ξx(t)}, Px(s) = L{px(t)}, Dx(s) =
L{dx(t)} denote Laplace transformation. In (16), the abso-
lute value of the coefficient of the CP reference is always
greater than the ZMP reference’s at αβ. To lead an inverted
pendulum to a steady state, the final reference of the CP and
the ZMP should be set to the same value. In case of the
constant disturbace, the final states of the CP and the ZMP
converge to

lim
s→0

s
Ξx(s)− Ξref

x (s)

Dx(s)

= lim
s→0

s · ω(s+ gp)

(s− α)(s− β)
· 1
s
=

ωgp
αβ

, (18)

lim
s→0

s
Px(s)− P ref

x (s)

Dx(s)

= lim
s→0

s · − (s− ω)(s+ gp)

(s− α)(s− β)
· 1
s
=

ωgp
αβ

. (19)

The same steady errors can be found for the CP and
ZMP. The examples for the step responses under constant
disturbance are shown in Fig. 4. The CP, the COG, and the
ZMP converged to the same position. Although increasing
the poles will reduce these steady errors, the peak of the ZMP
becomes large according to non-minimum phase property of
the inverted pendulum indicated in (16) and (17).
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III. CAPTURE POINT ERROR COMPENSATION

A. Capture Point Integration
In order to remove the offset of the state errors, an

integration of the Capture Point(CP) is introduced to the
controller. The integration of the CP can also be regarded
as the component of the state vector. The system in (9) is
extended to

d

dt

[
ξx
px∫
ξxdt

]
=

[
ω −ω 0
0 −gp 0
1 0 0

][
ξx
px∫
ξxdt

]
+

[
0
gp
0

]
pdx

(20)

The feedback controller with the CP integration (CPI) is
represented as

pdx = −kcpi1 (ξx−ξrefx )−kcpi2 (px−prefx )−kcpiI

∫
(ξx−ξrefx )dt

(21)
Then, the feedback gains can be calculated by the pole
assignment.

 kcpi1

kcpi2

kcpiI

 =


−αβ+βγ+γα−ω(α+β+γ−ω)

ωgp

−α+β+γ+gp−ω
gp

αβγ
ωgp

 (22)

As one of the poles γ is set to 0, the feedback gain in (22)
becomes

kcpi1 = kcp1 = −αβ − ω(α+ β − ω)

ωgp
,

kcpi2 = kcp2 = −α+ β + gp − ω

gp
,

kcpiI = 0.

We notice these feedback gains are completely the same as
the gains resulting from the CP controller in (11). Therefore,
the characteristics of this controller can be changed from
non-integration to integration of the CP by increasing one of
the pole. This implies that it is easy to tune the gains for the
CP error compensation by integration.

B. Characteristic of CPI-ZMP controller

Substituting (21) and (22) into the target system in (13),
the closed loop transfer function of the CP and the ZMP
from the input to the output can be also derived by Laplace
transformation, similar to Sec.II-D.

Ξx(s) =
(αβ + βγ + γα− ω(α+ β + γ − ω)) s− αβγ

(s− α)(s− β)(s− γ)

× Ξref
x (s)

+
ω(α+ β + γ − ω)

(s− α)(s− β)(s− γ)
P ref
x (s))

+
ωs(s+ gp)

(s− α)(s− β)(s− γ)
Dx(s) (23)

Px(s) = −
(
s− ω

ω

)
Ξx(s) (24)
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Fig. 5. Step response by CPI controller under presence of distur-
bance for Pole assignment {α, β, γ} = (top : {−1,−8,−1}/bottom :
{−4,−8,−1}). The other conditions are same as Fig.4 such as iniaial
value.

As the constant disturbance affects the system, the final states
of the CP and the ZMP become:

lim
s→0

s
Ξx(s)− Ξref

x (s)

Dx(s)

= lim
s→0

s · ωs(s+ gp)

(s− α)(s− β)(s− γ)
· 1
s
= 0 (25)

lim
s→0

s
Px(s)− P ref

x (s)

Dx(s)

= s · ωs(s− ω)(s+ gp)

(s− α)(s− β)(s− γ)
· 1
s
= 0 (26)

The steady errors of not only the CP but also the ZMP do
not remain when the CP integration is applied. The examples
of the step responses under constant disturbance are shown
in Fig. 5. In contrast to Fig. 4, the CP, the COG and the
ZMP converge to the desired reference. While removing the
offset, the peak of the ZMP becomes large to compensate
the error.

In the actual system, the ZMP should be limited within
the support polygon to prevent an unexpected change of the
contact on the ground. If the ZMP control output reaches the
edge of the support polygon, it is necessary to change the
motion to cut this value, eg. by applying landing modifica-
tion.
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IV. SIMULATION AND EXPERIMENTS

A. Control System

The balance controller is a part of the stabilization func-
tions for a humanoid robot. Our walking control system is
shown in Fig.6 [12]. Several feedback loops are implemented
in this system. All of feedback loops run at every 1ms.
The most inner loop is a position controller at each joint
which follows the desired joint angles through the inverse
kinematics[13]. This inverse kinematics solves the joint an-
gles from the waist and the feet position and attitude under
joint angle and velocity limitations. Then, the impedance
controller on each foot brings a reaction force to the desired
force at the next inner loop. The desired force is generated
through force distribution from the reference ZMP. The ref-
erence ZMP is the output of the balance controller added by
the desired ZMP as a feedforward term. The desired Capture
Point and the desired ZMP are sequentially generated from
online biped planner which is composed of the CP-ZMP
trajectory generation, the foot trajectory generation and a
finite state machine (FSM) of a support phase. The support
phase FSM is synchronized with a reaction force which
transits from a single support phase to a double support
phase. The waist reference is generated through a posture
control which tracks the desired waist attitude.

B. Effects of CP integration

To confirm the validity of the proposed controller, the
measurement errors of the waist attitude, the COG, the ZMP,
and the maximum vertical reaction force with and without the
CP integration are compared through experimental walking
on flat floor shown in Fig.7 (a)-(d). Each error is evaluated by
RMS(root-mean-square) according to walking speed from 0 -
1.57km/h. (a) The waist attitude errors denotes as the roll and
the pitch angles around sagittal (x-axis) and lateral (y-axis)
direction, respectively. In case of without the CP integration,
the pitch angles becomes larger increasing walking speed.
In constrast, the waist attitude errors becomes approximately
constant with the CP integration. (b) The COG errors are
also found the similar responses as the waist attitude errors
(a). (c) Although the both sagittal direction of ZMP errors
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Fig. 7. Comparion of measurement errors with/without CP integration

with and without the CP integraion becomes larger increasing
walking speed, the maximum ZMP error becomes smaller
using the CP integration. (d) The maximum vertical reaction
force with the CP integration becomes larger a little than
without integration.

From (a)-(d), the effects of CP integration can be found
for both the ZMP and the COG errors suppression during
walkinng, espcesially in sagittal direction in the actual hu-
manoid robot.

C. Walking on Up and Down Slope

To confirm the validity of the proposed controller, in the
simulation, we prepare an up and down 10% slope. The
snapshots of the walking motion at every 1[s] are shown in
Fig.8 The preplanned step length is 0.25[m] and the walking
cycle is 0.8[s]. No ground information is given preliminary
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Fig. 8. Walking on 10% slope
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Fig. 9. Experiment of Walking on Uneven Terrain

for walking. The online COG pattern generator shortens or
lengthens a single support period in order to synchronize a
sole contact. The humanoid robot can walk on each of the
slopes using the proposed controller withoug CP integration
with no loss of the transient response as the same as a long
term.

D. Experiment

We also performed walking experiments on uneven terrain.
The snapshots of the walking experiment at every 2[s] are
shown in Fig.9 (a). The terrain heights from the initial level
are shown in Fig.9 (b). In this experiment, the preplanned
step length is 0.25[m] and the walking cycle is 0.8[s], similar
to the simulation. Although the robot didn’t keep the center
line of the terrain according to an initial orientation or the
uncompensated contacts, stable walking could be realized.
The desired and measured CP and COG/ZMP are shown in
Fig.10 and Fig.11. Although the balance controller does not
directly control the COG position, the measure COG position
tracked the desired COG position.

The CP error and its integral value are shown in Fig.12.
The time response of the CP integration can also be found
without divergence. In case of a integral saturation, the
wind-up phenomenon will be caused. In this case, the foot
modification can avoid this problem.

(a) Frontal Plane

(a) Sagittal Plane

Fig. 10. Desired/Measured Capture Point on Uneven Terrain

V. CONCLUSION

In this paper, we improved a balance control base on the
Capture Point control (CP). At first a characteristic of the
conventional balance controller was shown as the same as
the CP controller essentially. Then we analyzed the transfer
function of the balance controller. We introduced a new
state variable with the CP, its integration and the ZMP in
order to trim a long term offset of the CP and the ZMP.
The validity of the proposed balance controller was verified
through simulation and experiments involving the humanoid
robot HRP-2.

According to the support polygon of the feet, a balance
controller is subject to restrictions of the upper and lower
ZMP value. Biped locomotion has more potential to improve
balance capacity by applying foot step modification. That is
our future work.
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