libvstp — Very Simple Trajectory Planner

Anthony Mallet, Aurélien Kamel

November 2003

1 Purpose

libvstp (which stands for “very simple trajectory planner”) is a very simple geometric path
planning C library. It uses state of the art techniques which do not take into account robot
kinematics nor dynamics. The robot is supposed to be a disk, of a configurable diameter.
Thus, this software is for people who are looking to basic path planning algorithms and want
to focus on other proplems than path planning.

This library is intented to be an efficient way to get the shortest path from one point to
another, in a 2D environment cluttered with obstacles, modeled with 2D polylines. The path
is computed by making a search in a visibility graph where the nodes are the end points of
the obstacles and the edges link together the nodes which can be reach by a straight line. In
order to optimize the visibility graph computation, a 2D grid is used to hash the segments of
the obstacles.

The source code is available for download here :
http://softs.laas.fr/openrobots/path/vstp.php

2 User interface

Vstp comes with an optional user interface, written in Tk. This interface is mostly for
debugging purpose, so the goal is to keep is as simple as possible. To use it, simply launch
your preffered wish interpreter (an interpreter for the Tk language). The interface package
is located in the $libdir you configured during the compilation of the packages, in the
subdirectory vstpinterface. It can be loaded with the load TCL command:

tcl> load your_lib_dir/vstpinterface/libvstpinterface.so

In the same directory, a sample map exmap.xml is provided. You can load it from the
graphical interface.

3 Files format

Vstp reads list of segments in files. These files must be written in XML, with the following
structure:

<map>
<segment>
<point><x> vvv.vv </x><y> vvv.vv </y></point>
<point><x> vvv.vv </x><y> vvv.vv </y></point>
</segment>

<segment>

</segment>

</map>

Segments are considered as a frontier between free space and occupied (obstacle) space.
Thus, they are oriented: the order in which the two points appear is important. The orienta-
tion is such the free space is located on your right hand when you go from the first point to

the second. vvv.vv in the map file represents the actual coordinate of the point, in floating
point format.

4 Data structures

typedef struct vstp_data vstp_data;

vstp_data is an opaque type which is used to maintain a context between the different API
functions calls. You should not try to modify its value nor to access the structure members.
You can use automatic storage to keep a vstp_data, although passing a value which was not
returned by a call to vstp_Datalnit() is not supported.

typedef struct vstp_segment {
double x0, y0;
double x1, y1;

} vstp_segment;

The vstp_segment structure is used to pass to or get from functions that manipulate such
objects an array of 2D segments. x0 and y0 represent the coordinates of the first point; x1
and yl those of the second.

typedef struct vstp_traj {
double x, y;
struct vstp_traj *next;
} vstp_traj;

This structure is a linked list of points which represent a planned trajectory. x and y are the
coordinates of the current point and next is a reference to the next point, or NULL for the
last one.

5 API reference

vstp_data *vstp_Datalnit(double rRadius, double gridSize, double idealDist, dou-
ble maxDist);

double rRadius Robot radius, in meters.

double gridSize Grid resolution, in meters.

double idealDist Ideal distance to obstacles, in meters.
double maxDist Maximum distance to obstacles, in meters.

Creates a vstp context and returns it. You must keep the returned value and pass it to the
other functions. The grid resolution (gridSize) is the size of the hashing array: the ideal value
depends on the density of the environment, but you should typically start with a value close
to the robot radius. The idealDist and maxDist parameters are used for improving trajectories
which will otherwise pass very close to the obstacles.

void vstp_DataFree(vstp_data *vstpdata);

vstp_data *vstpdata VSTP context.

Destroys a vstp context and release any storage associated to it. You cannot use the
vstpdata anymore once this function returns.
int vstp_SetRobotRadius(vstp_data *vstpdata, double rRadius);

vstp_data *vstpdata VSTP context.

double rRadius Robot radius, in meters.

Changes the current robot radius. Note that this invalidates the visibility graph and a
call to vstp_RefreshGraph must be done after this function and before a call to vstp_PlanTraj.

int vstp_SetGridSize(vstp_data *vstpdata, double gridSize);

vstp_data *vstpdata VSTP context.
double gridSize Grid resolution, in meters.

Changes the current grid size (hashing array). Note that this invalidates the visibility
graph and a call to vstp_RefreshGraph must be done after this function and before a call to
vstp_PlanTraj.

vstp_segment *vstp_GetSegFromMapFile(char *map, int *size);

char *map File name containing a segment file.
int *size Number of segments read.

This reads a segment list in the file map and returns an array of size segments. You should
not try to modify the actual content of the array (unless you want some unexpected results).
Segments are kept internally, so you do not need to free the memory associated to the array.

int vstp_AddSegPkg(vstp_data *vstpdata, vstp_segment *seg, int n, int type);

vstp_data *vstpdata VSTP context.
vstp_segment *seg Segment list.

int n Number of segments.
int type Type of segments.

This adds the array seg of n segments to the current vstp map. Segments can be of two
types: VSTP_SEGMENT for actual obstacles (walls, doors and so forth) or VSTP_OBSTACLE
for virtual obstacles (forbidden areas, ...). The function returns an id (integer) which can be
used to further delete the list of segments. A call to vstp_RefreshGraph must be done after
this function and before a call to vstp_PlanTraj.

int vstp_DelSegPkg(vstp_data *vstpdata, int id);
vstp_data *vstpdata VSTP context.

int id Reference of segments to be removed.

Remove a list of segments from the current map. The id must be one returned by a
previous call to vstp_AddSegPkg. Once the segments are deleted, vstp_RefreshGraph must be
called before vstp_PlanTraj.

int vstp_RefreshGraph(vstp_data *vstpdata);
vstp_data *vstpdata VSTP context.
Recompute the visibility graph. This can take a while, but it needs only to be called

once. Some functions like vstp_AddSegPkg invalidate the current graph: they are explicitely
mentionned as such in their synopsis.

vstp_traj *vstp_PlanTraj(vstp_data *vstpdata, double x0, double y0, double x1,
double y1, int improve);

vstp_data *vstpdata VSTP context.

double x0 X coordinate of initial position.

double y0 Y coordinate of initial position.

double x1 X coordinate of final position.

double y1 Y coordinate of final position.

int improve Whether to try to improve the trajectory or not.

This is the main function, which plans a trajectory from the point (x0,y0) to (x1, y1). If
improve is not zero, the resulting trajectory is moved away from the obstacles where possible.
This option is still experimental and in some situations you might get weird trajectories. To
be sure to obtain the shortest path, use improve = 0.

— December 03, 2003. Revision 1.4 —

