cddlib Reference Manual

Komei Fukuda
Institute for Operations Research

and Institute of Theoretical Computer Science
ETH Zentrum, CH-8092 Zurich, Switzerland

(cddlib ver. 0.94, manual ver. February 7, 2008)

Contents
1 Introduction
2 Polyhedra H- and V-Formats (Version 1999)
3 Basic Object Types (Structures) in cddlib
4 Library Functions
4.1 Library Initialization
4.2 Core Functions e
4.3 Data Manipulations
4.3.1 Number Assignments e
4.3.2 Arithmetic Operations for mytype Numbers
4.3.3 Predefined Constants
4.3.4 Sign Evaluation and Comparison for mytype Numbers
4.3.5 Polyhedra Data Manipulation
4.3.6 LP Data Manipulation
4.3.7 Matrix Manipulation L Lo
4.4 Tnput/Output Functions
4.5 Obsolete Functions
4.6 Set Functions in setoper library
5 An Extension of the CDD Library in GMP mode
6 Examples
7 Numerical Accuracy
8 Other Useful Codes
9 Codes Using Cddlib

Abstract

This is a reference manual for cddlib-094. The manual describes the library functions and
data types implemented in the cddlib C-library which is to perform fundamental polyhedral
computations such as representation conversions and linear programming in both floating-point

16

16

16

16

17

and GMP rational exact arithmetic. Please read the accompanying README file and test
programs to complement the manual.

The new functions added in this version include dd MatrixCanonicalize to find a non-
redundant proper H- or V-representation, dd_FindRelativeInterior to find a relative interior
point of an H-polyhedron, and dd_ExistsRestrictedFace (Farkas-type alternative theorem
verifier) to check the existence of a point satisfying a specified system of linear inequalities
possibly including multiple strict inequalities.

The new functions are particularly important for the development of related software pack-
ages MinkSum (by Ch. Weibel) and Gfan (by Anders Jensen),

1 Introduction

The program cddlib is an efficient implementation [16] of the double description Method [19] for
generating all vertices (i.e. extreme points) and extreme rays of a general convex polyhedron given
by a system of linear inequalities:

P={x=(z1,20,...,29)7 € R*:b— Az >0}

where A is a given m X d real matrix and b is a given real m-vector. In the mathematical lan-
guage, the computation is the transformation of an H-representation of a convex polytope to an
V-representation.

cddlib is a C-library version of the previously released C-code cdd/cdd+. In order to make
this library version, a large part of the cdd source (Version 0.61) has been rewritten. This library
version is more flexible since it can be called from other programs in C/C++. Unlike cdd/cdd+,
cddlib can handle any general input and is more general. Furtthermore, additional functions have
been written to extend its functionality.

One useful feature of cddlib/cdd/cdd+ is its capability of handling the dual (reverse) problem
without any transformation of data. The dual transformation problem of a V-representation to
a minimal H-representation and is often called the (convex) hull problem. More explicitly, is to
obtain a linear inequality representation of a convex polyhedron given as the Minkowski sum of the
convex hull of a finite set of points and the nonnegative hull of a finite set of points in R%:

P = conv(vy,...,vn) + nonneg(rns1,-- -, nts)s
where the Minkowski sum of two subsets S and T of R? is defined as
S+T={s+t|seSandteT}.

As we see in this manual, the computation can be done in straightforward manner. Unlike the
earlier versions of cdd/cdd+ that assume certain regularity conditions for input, cddlib is designed
to do a correct transformation for any general input. The user must be aware of the fact that
in certain cases the transformation is not unique and there are polyhedra with infinitely many
representations. For example, a line segment (1-dimensional polytope) in R? has infinitely many
minimal H-representations, and a halfspace in the same space has infinitely many minimal V-
representations. cddlib generates merely one minimal representation.

cddlib comes with an LP code to solve the general linear programming (LP) problem to maxi-
mize (or minimize) a linear function over polyhedron P. It is useful mainly for solving dense LP’s
with large m (say, up to few hundred thousands) and small d (say, up to 100). It implements a
revised dual simplex method that updates (d 4+ 1) x (d 4+ 1) matrix for a pivot operation.

The program cddlib has an I/O routines that read and write files in Polyhedra format which
was defined by David Avis and the author in 1993, and has been updated in 1997 and 1999. The

program called Irs and lrslib [2] developed by David Avis is a C-implementation of the reverse
search algorithm [4] for the same enumeration purpose, and it conforms to Polyhedra format as
well. Hopefully, this compatibility of the two programs enables users to use both programs for the
same input files and to choose whichever is useful for their purposes. From our experiences with
relatively large problems, the two methods are both useful and perhaps complementary to each
other. In general, the program cddlib tends to be efficient for highly degenerate inputs and the
program rs tends to be efficient for nondegenerate or slightly degenerate problems.

Although the program can be used for nondegenerate inputs, it might not be very efficient.
For nondegenerate inputs, other available programs, such as the reverse search code Irs or ghull
(developed by the Geometry Center), might be more efficient. See Section 8 for pointers to these
codes. The paper [3] contains many interesting results on polyhedral computation and experimental
results on cdd+, Irs, ghull and porta.

This program can be distributed freely under the GNU GENERAL PUBLIC LICENSE. Please
read the file COPYING carefully before using.

I will not take any responsibility of any problems you might have with this program. But I will
be glad to receive bug reports or suggestions at the e-mail addresses above. If cddlib turns out
to be useful, please kindly inform me of what purposes cdd has been used for. I will be happy to
include a list of applications in future distribution if I receive enough replies. The most powerful
support for free software development is user’s appreciation and collaboration.

2 Polyhedra H- and V-Formats (Version 1999)

Every convex polyhedron has two representations, one as the intersection of finite halfspaces and
the other as Minkowski sum of the convex hull of finite points and the nonnegative hull of finite
directions. These are called H-representation and V-representation, respectively.

Naturally there are two basic Polyhedra formats, H-format for H-representation and V-format
for V-representation. These two formats are designed to be almost indistinguishable, and in fact,
one can almost pretend one for the other. There is some asymmetry arising from the asymmetry
of two representations.

First we start with the H-representation. Let A be an m X d matrix, and let b be a column
m-vector. The Polyhedra format (H-format) of the system b — Ax > 0 of m inequalities in d
variables x = (21,2, ...,24)7 is

various comments
H-representation

(linearity ¢ i1 iy ... i)
begin

m d+1 numbertype
b —A

end

various options

where numbertype can be one of integer, rational or real. When rational type is selected, each
component of b and A can be specified by the usual integer expression or by the rational expression
“p/q” or “—p/q” where p and ¢ are arbitrary long positive integers (see the example input file
rational.ine). In the 1997 format, we introduced “H-representation” which must appear before
“begin”. There was one restriction in the old polyhedra format (before 1997): the last d rows must
determine a vertex of P. This is obsolete now.

In the new 1999 format, we added the possibility of specifying linearity. This means that for
H-representation, some of the input rows can be specified as equalities: b;; — A;;z = 0 for all
7 =1,2,...,t. The linearity line may be omitted if there are no equalities.

Option lines can be used to control computation of a specific program. In particular both cdd
and Irs use the option lines to represent a linear objective function. See the attached LP files,
samplelp*.ine.

Next we define Polyhedra V-format. Let P be represented by n gerating points and s generating
directions (rays) as P = conv(vy,...,v,) + nonneg(rp41, ..., n+s). Then the Polyhedra V-format
for P is

various comments
V-representation

(linearity ¢t iy iy ... i;)
begin
n+s d+1 numbertype
1 (%1
1 Un,
Tn+1
0 T'n+ts
end

various options

Here we do not require that vertices and rays are listed separately; they can appear mixed in
arbitrary order.

Linearity for V-representation specifies a subset of generators whose coefficients are relaxed to
be free: for all j =1,2,...,t, the k = i;th generator (v or r, whichever is the i;th generator) is
a free generator. This means for each such a ray ry, the line generated by r is in the polyhedron,
and for each such a vertex vy, its coefficient is no longer nonnegative but still the coefficients for all
v;’s must sum up to one. It is highly unlikely that one needs to use linearity for vertex generators,
and it is defined mostly for formality.

When the representation statement, either “H-representation” or “V-representation”, is omit-
ted, the former “H-representation” is assumed.

It is strongly suggested to use the following rule for naming H-format files and V-format files:

(a) use the filename extension “.ine” for H-files (where ine stands for inequalities), and

(b) use the filename extension “.ext” for V-files (where ext stands for extreme points/rays).

3 Basic Object Types (Structures) in cddlib

Here are the types (defined in cddtypes.h) that are important for the cddlib user. The most
important one, dd MatrixType, is to store a Polyhedra data in a straightforward manner. Once
the user sets up a (pointer to) dd MatrixType data, he/she can load the data to an internal data
type (dd_PolyhedraType) by using functions described in the next section, and apply the double
descrition method to get another representation. As an option dd MatrixType can save a linear
objective function to be used by a linear programming solver.

The two dimensional array data in the structure dd MatrixType is dd_Amatrix whose com-
ponents are of type mytype. The type mytype is set to be either the rational type mpq_t of the
GNU MP Library or the C double array of size 1. This abstract type allows us to write a single
program that can be compiled with the two or more different arithmetics, see example programs
such as simplecdd.c, testlp*.c and testcdd*.c in the src and src-gmp subdirectories of the source
distribution.

There is another data type that is used very often, dd_SetFamilyType. This is to store a
family of subsets of a finite set. Such a family can represent the incidence relations between the
set of extreme points and the set of facets of a polyhedron. Also, it can represent a graph struc-
ture by listing the set of vertices adjacent to each vertex (i.e. the adjacency list). To implement
dd_SetFamilyType, we use a separate set library called setoper, that handles the basic set opera-
tions, This library is briefly introduced in Section 4.6.

#define dd_FALSE O
#define dd_TRUE 1

typedef long dd_rowrange;
typedef long dd_colrange;
typedef long dd_bigrange;

typedef set_type dd_rowset; /* set_type defined in setoper.h */

typedef set_type dd_colset;

typedef long *dd_rowindex;

typedef int *dd_rowflag;

typedef long *dd_colindex;

typedef mytype **dd_Amatrix; /* mytype is either GMP mpq_t or 1-dim double array. */
typedef mytype *dd_Arow;

typedef set_type *dd_SetVector;

typedef enum {
dd_Real, dd_Rational, dd_Integer, dd_Unknown
} dd_NumberType;

typedef enum {
dd_Inequality, dd_Generator, dd_Unspecified
} dd_RepresentationType;

typedef enum {
dd_MaxIndex, dd_MinIndex, dd_MinCutoff, dd_MaxCutoff, dd_MixCutoff,
dd_LexMin, dd_LexMax, dd_RandomRow

} dd_RowOrderType;

typedef enum {
dd_InProgress, dd_AllFound, dd_RegionEmpty
} dd_CompStatusType;

typedef enum {
dd_DimensionToolLarge, dd_ImproperInputFormat,

dd_NegativeMatrixSize, dd_EmptyVrepresentation,
dd_IFileNotFound, dd_OFileNotOpen, dd_NoLPObjective,
dd_NoRealNumberSupport, dd_NoError

} dd_ErrorType;

typedef enum {
dd_LPnone=0, dd_LPmax, dd_LPmin
} dd_LPObjectiveType;

typedef enum {
dd_LPSundecided, dd_Optimal, dd_Inconsistent, dd_DualInconsistent,
dd_StrucInconsistent, dd_StrucDualIlnconsistent,
dd_Unbounded, dd_DualUnbounded

} dd_LPStatusType;

typedef struct matrixdata *dd_MatrixPtr;
typedef struct matrixdata {

dd_rowrange rowsize;

dd_rowset linset;

/* a subset of rows of linearity (ie, generators of
linearity space for V-representation, and equations
for H-representation. */

dd_colrange colsize;
dd_RepresentationType representation;
dd_NumberType numbtype;
dd_Amatrix matrix;
dd_LPObjectiveType objective;
dd_Arow rowvec;

} dd_MatrixType;

typedef struct setfamily *dd_SetFamilyPtr;
typedef struct setfamily {

dd_bigrange famsize;

dd_bigrange setsize;

dd_SetVector set;
} dd_SetFamilyType;

typedef struct lpsolution *dd_LPSolutionPtr;
typedef struct lpsolution {
dd_DataFileType filename;
dd_LPObjectiveType objective;
dd_LPSolverType solver;
dd_rowrange m;
dd_colrange d;
dd_NumberType numbtype;

dd_LPStatusType LPS; /* the current solution status */
mytype optvalue; /* optimal value */

dd_Arow sol; /* primal solution */
dd_Arow dsol; /* dual solution */
dd_colindex nbindex; /* current basis represented by nonbasic indices */
dd_rowrange re; /* row index as a certificate in the case of inconsistency */
dd_colrange se; /* col index as a certificate in the case of dual inconsistency */
long pivots[5];
/* pivots[0]=setup (to find a basis), pivots[1]=Phasel or Criss-Cross,
pivots[2]=Phase II, pivots[3]=Anticycling, pivots[4]=GMP postopt */
long total_pivots;
} dd_LPSolutionType;

4 Library Functions

Here we list some of the most important library functions/procedures. We use the following conven-
tion: poly is of type dd PolyhedraPtr, matrix, matrixl and matrix2 are of type dd MatrixPtr,
matrixP, of type dd MatrixPtr*, err is of type dd_ErrorType*, ifile and ofile are of type
charx*, A is of type dd_Amatrix, point and vector are of type dd_Arow, d is of type dd_colrange,
m and i are of type dd _rowrange, x is of type mytype, a is of type signed long integer, b is
of type double, set is of type set_type. Also, setfam is of type dd_SetFamilyPtr, 1p is of type
dd_LPPtr, 1ps is of type dd_LPSolutionPtr, solver is of type dd LPSolverType, roworder is of
type dd_RowOrderType.

4.1 Library Initialization

void dd_set_global_constants(void) :
This is to set the global constants such as dd_zero, dd_purezero and dd_one for sign recog-
nition and basic arithmetic operations. Every program to use cddlib must call this function
before doing any computation. Just call this once. See Section 4.3.3 for the definitions of
constants.

void dd_free global _constants(void) :
This is to free the global constants. This should be called when one does not use cddlib
functions anymore.

4.2 Core Functions

There are two types of core functions in cddlib. The first type runs the double description (DD)
algorithm and does a representation conversion of a specified polyhedron. The standard header for
this type is dd_DD*. The second type solves one or more linear programs with no special headers.
Both types of computations are nontrivial and the users (especially for the DD algorithm) must
know that there is a serous limit in the sizes of problems that can be practically solved. Please
check *.ext and *.ine files that come with cddlib to get ideas of tractable problems.

In addition to previously defined objects, the symbol roworder is of dd_RowOrderType. The
symbol matrixP is a pointer to dd_MatrixType. the arguments impl 1in and redset are both
a pointer to dd_rowset type, and newpos is a pointer to dd_rowindex type.

dd_PolyhedraPtr dd DDMatrix2Poly(matrix, err) :
Store the representation given by matrix in a polyhedra data, and generate the second rep-
resentation of *poly. It returns a pointer to the data. *err returns dd NoError if the

computation terminates normally. Otherwise, it returns a value according to the error oc-
cured.

dd_PolyhedraPtr dd_DDMatrix2Poly2(matrix, roworder, err) :

This is the same function as dd DDMatrix2Poly except that the insertion order is speci-
fied by the user. The argument roworder is of dd RowOrderType and takes one of the val-
ues: dd_MaxIndex, dd_ MinIndex, dd MinCutoff, dd MaxCutoff, dd MixCutoff, dd_LexMin,
dd _LexMax, dd RandomRow. In general, dd LexMin is the best choice which is in fact chosen
in dd DDMatrix2Poly. If you know that the input is already sorted in the order you like, use
dd MinIndex or dd_MaxIndex. If the input contains many redundant rows (say more than
80% redundant), you might want to try dd MaxCutoff which might result in much faster
termination, see [3, 16]

boolean dd DDInputAppend(poly, matrix, err) :
Modify the input representation in *poly by appending the matrix of *matrix, and compute
the second representation. The number of columns in *matrix must be equal to the input
representation.

boolean dd LPSolve(lp, solver, err) :
Solve 1p by the algorithm solver and save the solututions in *1p. Unlike the earlier versions
(dplex, cdd+), it can deal with equations and totally zero right hand sides. It is recommended
that solver is dd DualSimplex, the revised dual simplex method that updates a d x d dual
basis matrix in each pivot (where d is the column size of lp).

The revised dual simplex method is ideal for dense LPs in small number of variables (i.e.
small column size, typically less than 100) and many inequality constraints (i.e. large row
size, can be a few ten thousands). If your LP has many variables but only few constraints,
solve the dual LP by this function.

When it is compiled for GMP rational arithmetic, it first tries to solve an LP with C double
floating-point arithmetic and verifies whether the output basis is correct with GMP. If so, the
correct solution is computed with GMP. Otherwise, it (re)solves the LP from scratch with
GMP. This is newly implemented in the version 093. The original (non-crossover) version of
the same function is still available as boolean dd_LPSolveO.

dd boolean dd Redundant(matrix, i, point, err) :
Check whether ith data in matrix is redundant for the representation. If it is nonredundant,
it returns a certificate. For H-representation, it is a point in R? which satisfies all inequalities
except for the ith inequality. If ¢ is a linearity, it does nothing and always returns dd_FALSE.

dd_rowset dd_RedundantRows(matrix, err) :
Returns a maximal set of row indices such that the associated rows can be eliminated without
changing the polyhedron. The function works for both V- and H-representations.

dd boolean dd _SRedundant(matrix, i, point, err) :
Check whether ith data in matrix is strongly redundant for the representation. If 7 is a lin-
earity, it does nothing and always returns dd_FALSE. Here, ith inequality in H-representation
is strongly redundant if it is redundant and there is no point in the polyhedron satisfying the
inequality with equality. In V-representation, ¢th point is strongly redundant if it is redundant
and it is in the relative interior of the polyhedron. If it is not strongly redundant, it returns
a certificate.

dd boolean dd _ImplicitLinearity(matrix, i, err) :
Check whether ith row in the input is forced to be linearity (equality for H-representation).
If ¢ is linearity itself, it does nothing and always returns dd_FALSE.

dd_rowset dd_ImplicitLinearityRows(matrix, err) :
Returns the set of indices of rows that are implicitly linearity. It simply calls the library
function dd_ImplicitLinearity for each inequality and collects the row indices for which
the answer is dd_TRUE.

dd_boolean dd MatrixCanonicalize(matrixP, impl lin, redset, newpos, err) :
The input is a pointer matrixP to a matrix and the function modifies the matrix by putting
a maximally linear independent linearities (basis) at the top of the matrix, and removing
all redundant data. All implicit linearities and all (removed) redundant rows in the original
matrix will be returned in the corresponding row sets. The new positions of the original rows
are returned by the array newpos.

The cardinality of the new linearity set (*matrixP)->linset is the codimension of the poly-
hedron if it is H-polyhedron, and is the dimension of linearity space if it is V-polyhedron.

Note that the present version should not be called a canonicalization because it may generate
two different representations of the same polyhedron. In the future, this function is expected
to be correctly implemented.

dd_boolean dd MatrixCanonicalizeLinearity(matrixP, impl linset, newpos. err) :
It does only the first half of dd_boolean dd MatrixCanonicalize, namely, it detects all
implicit linearities and puts a maximally independent linearities at the top of the matrix. For
example, this function can be used to detect the dimension of an H-polyhedron.

dd_boolean dd MatrixRedundancyRemove(matrixP, redset, newpos, err) :
It does essentially the second half of dd_boolean dd_MatrixCanonicalize, namely, it detects
all redundancies. This function should be used after dd MatrixCanonicalizeLinearity has
been called.

dd_boolean dd FindRelativeInterior(matrix, impl lin, lin basis, lps, err) :
Computes a point in the relative interior of an H-polyhedron given by matrix, by solving
an LP. The point will be returned by 1lps. See the sample program allfaces.c that generates
all nonempty faces of an H-polyhedron and a relative interior point for each face. The
former returns all implicit linearity rows (implicit equations) and the latter returns a basis
of the union of linearity rows and implicit linearity rows. This means that the cardinality of
*1in_basis is the codimension of the polyhedron.

dd_boolean dd_ExistsRestrictedFace(matrix, R, S, err) :
Returns the answer to the Farkas’ type decision problem as to whether there is a point in the
polyhedron given by matrix satisfying all constraints in R with equality and all constraints in
S with strict inequality. More precisely, it is the linear feasibility problem:

37 x satisfying b, —A,x =0,Vre RUL
bs —Asx >0,Vse S
by — Ayx >0, VteT,

where L is the set of linearity rows of matrix, and T represents the set of rows that are not
in RULUS. Both R and S are of dd_rowset type. The set S is supposed to be disjoint from
both R and L. If it is not the case, the set S will be considered as S\ (RU L).

This function ignores matrix->representation, and thus even if it is set to dd_Generator
or dd Unspecified, it treats the matrix as if it were inequality representation.

dd_boolean dd ExistsRestrictedFace2(matrix, R, S, lps, err) :
It is the same as the function dd_ExistsRestrictedFace except that it returns also a certifi-
cate for the answer. The certificate is a solution to the bounded LP:

(P) maxz subject to b, — A,z =0,Vre RUL
bs —Asx —z >0,Vse S
by — Ayx >0,VvVieT
1 —z >0,

where L is the set of linearity rows of matrix, and T represents the set of rows that are not
in RULUS. The answer for the decision problem is YES if and only if the LP attains an
optimal and the optimal value is positive. The dual solution (either an optimal solution or a
dual unbounded direction) can be considered as a certificate for the NO answer, if the answer
is NO.

This function ignores matrix->representation, and thus even if it is set to dd_Generator
or dd Unspecified, it treats the matrix as if it were inequality representation.

dd_SetFamilyPtr dd_Matrix2Adjacency(matrix, err) :
Computes the adjacency list of input rows using the LP solver and without running the
representation conversion. When the input is H-representation, it gives the facet graph of the
polyhedron. For V-representation, it gives the (vertex) graph of the polyhedron. It is required
that the input matrix is a minimal representation. Run redundancy removal functions before
calling this function, see the sample code adjacency.c.

dd_SetFamilyPtr dd_Matrix2WeakAdjacency(matrix, err) :

Computes the weak adjacency list of input rows using the LP solver and without running
the representation conversion. When the input is H-representation, it gives the graph where
its nodes are the facets two nodes are adjacent if and only if the associated facets have some
intersection. For V-representation, it gives the graph where its nodes are the vertices and two
nodes are adjacent if and only if the associated vertices are on a common facet. It is required
that the input matrix is a minimal representation. Run redundancy removal functions before
calling this function, see the sample code adjacency.c.

dd_MatrixPtr dd_FourierElimination(matrix, err) :
Eliminate the last variable from a system of linear inequalities given by matrix by using the
Fourier’s Elimination. If the input matrix is V-representation, *err returns dd_NotAvailForV.
This function does not remove redundancy and one might want to call redundancy removal
functions afterwards. See the sample code fourier.c.

dd_MatrixPtr dd_BlockElimination(matrix, set, err) :
Eliminate a set of variables from a system of linear inequalities given by matrix by using
the extreme rays of the dual linear system. See comments in the code cddproj.c for details.
This might be a faster way to eliminate variables than the repeated FourierElimination when
the number of variables to eliminate is large. If the input matrix is V-representation, *err
returns dd_NotAvailForV. This function does not remove redundancy and one might want to
call redundancy removal functions afterwards. See the sample code projection.c.

dd_rowrange dd_RayShooting(matrix, point, vector) :
Finds the index of a halfspace first left by the ray starting from point toward the direction

10

vector. It resolves tie by a lexicographic perturbation. Those inequalities violated by point
will be simply ignored.

4.3 Data Manipulations

4.3.1 Number Assignments

For number assignments, one cannot use such expressions as x=(mytype)a. This is because cddlib
uses an abstract number type (mytype) so that it can compute with various number types such
as C double and GMP rational. User can easily add a new number type by redefining arithmetic
operations in cddmp.h and cddmp.c.

void dd_init(x) :
This is to initialize a mytype variable x and to set it to zero. This initialization has to be
called before any mytype variable to be used.

void dd_clear(x) :
This is to free the space allocated to a mytype variable x.

void dd_set_si(x, a) :
This is to set a mytype variable x to the value of signed long integer a.

void dd_set_si2(x, a, b) :
This is to set a mytype variable x to the value of the rational expression a/b, where a is signed
long and b is unsigned long integers.

void dd_set_d(x, b) :
This is to set a mytype variable x to the value of double b. This is available only when the
library is compiled without ~-DGMPRATIONAL compiler option.

4.3.2 Arithmetic Operations for mytype Numbers

Below x, y, z are of type mytype.

void dd_add(x, y, z) :
Set x to be the sum of y and z.

void dd_sub(x, y, z) :
Set x to be the substraction of z from y.

void dd mul(x, y, z) :
Set x to be the multiplication of y and z.

void dd div(x, y, z) :
Set x to be the division of y over z.

void dd_inv(x, y) :
Set x to be the reciplocal of y.

11

4.3.3 Predefined Constants

There are several mytype constants defined when dd_set_global_constants(void) is called. Some
constants depend on the double constant dd_almostzero which is normally set to 10~7 in cdd.h.
This value can be modified depending on how numerically delicate your problems are but an extra
caution should be taken.

mytype dd_purezero :
This represents the mathematical zero 0.

mytype dd_zero :
This represents the largest positive number which should be considered to be zero. In the
GMPRATIONAL mode, it is equal to dd_purezero. In the C double mode, it is set to the
value of dd_almostzero.

mytype dd_minuszero :
The negative of dd_zero.

mytype dd_one :
This represents the mathematical one 1.

4.3.4 Sign Evaluation and Comparison for mytype Numbers

Below x, y, z are of type mytype.

dd_boolean dd_Positive(x) :
Returns dd_TRUE if x is considered positive, and dd_FALSE otherwise. In the GMPRATIONAL
mode, the positivity recognition is exact. In the C double mode, this means the value is strictly
larger than dd_zero.

dd_boolean dd _Negative(x) works similarly.

dd_boolean dd_Nonpositive(x) :
Returns the negation of dd Positive(x). dd Nonnegative (x) works similarly.

dd boolean dd _EqualToZero(x) :
Returns dd_TRUE if x is considered zero, and dd_FALSE otherwise. In the GMPRATIONAL
mode, the zero recognition is exact. In the C double mode, this means the value is inbetween
dd_minuszero and dd_zero inclusive.

dd boolean dd Larger(x, y) :
Returns dd_TRUE if x is strictly larger than y, and dd_FALSE otherwise. This is implemented
as dd_Positive(z) where z is the subtraction of y from x. dd_Smaller(x, y) works similarly.

dd boolean dd Equal(x, y) :
Returns dd_TRUE if x is considered equal to y, and dd_FALSE otherwise. This is implemented
as dd_EqualToZero(z) where z is the subtraction of y from x.

4.3.5 Polyhedra Data Manipulation

dd MatrixPtr dd_PolyFile2Matrix (f, err) :
Read a Polyhedra data from stream f and store it in matrixdata and return a pointer to the
data.

12

dd_MatrixPtr dd_CopyInequalities(poly) :
Copy the inequality representation pointed by poly to matrixdata and return dd_MatrixPtr.

dd MatrixPtr dd_CopyGenerators(poly) :
Copy the generator representation pointed by poly to matrixdata and return dd_MatrixPtr.

dd_SetFamilyPtr dd_CopyIncidence(poly) :
Copy the incidence representation of the computed representation pointed by poly to setfamily
and return dd_SetFamilyPtr. The computed representation is Inequality if the input is
Generator, and the vice visa.

dd_SetFamilyPtr dd_CopyAdjacency(poly) :
Copy the adjacency representation of the computed representation pointed by poly to setfamily
and return dd_SetFamilyPtr. The computed representation is Inequality if the input is
Generator, and the vice visa.

dd_SetFamilyPtr dd_CopyInputIncidence(poly) :
Copy the incidence representation of the input representation pointed by poly to setfamily
and return d_SetFamilyPtr.

dd_SetFamilyPtr dd_CopyInputAdjacency(poly) :
Copy the adjacency representation of the input representation pointed by poly to setfamily
and return d_SetFamilyPtr.

void dd FreePolyhedra(poly) :
Free memory allocated to poly.

4.3.6 LP Data Manipulation

dd_LPPtr dd_MakeLPforInteriorFinding(lp) :
Set up an LP to find an interior point of the feasible region of 1p and return a pointer to the
LP. The new LP has one new variable 4,1 and one more constraint: maxx,11 subject to
b— Ax —x441 > 0 and 441 < K, where K is a positive constant.

dd_LPPtr dd_Matrix2LP(matrix, err) :
Load matrix to lpdata and return a pointer to the data.

dd_LPSolutionPtr dd_CopyLPSolution(lp) :
Load the solutions of 1p to 1psolution and return a pointer to the data. This replaces the
old name dd_LPSolutionLoad(1p).

void dd FreeLPData(lp) :
Free memory allocated as an LP data pointed by 1p.

void dd_FreeLPSolution(lps) :
Free memory allocated as an LP solution data pointed by 1ps.

4.3.7 Matrix Manipulation

dd MatrixPtr dd_CopyMatrix(matrix) :
Make a copy of matrixdata pointed by matrix and return a pointer to the copy.

13

dd MatrixPtr dd_AppendMatrix(matrixl, matrix2) :
Make a matrixdata by copying *matrixl and appending the matrix in *matrix2 and return
a pointer to the data. The colsize must be equal in the two input matrices. It returns a
NULL pointer if the input matrices are not appropriate. Its rowsize is set to the sum of
the rowsizes of matrixl and matrix2. The new matrixdata inherits everything else (i.e.
numbertype, representation, etc) from the first matrix.

int dd MatrixAppendTo(& matrixl, matrix2) :
Same as dd_AppendMatrix except that the first matrix is modified to take the result.

int dd_MatrixRowRemove(& matrix, i) :
Remove the ith row of matrix.

dd_MatrixPtr dd_MatrixSubmatrix(matrix, set) :
Generate the submatrix of matrix by removing the