
uBlas: Boost High Performance Vector
and Matrix Classes

Juan José Gómez Cadenas
University of Geneve and University of Valencia

(thanks to:
 Joerg Walter, uBlas co-author.
Todd Vedhuizem, ET co-inventor)

Vector and Matrix classes in C++

 Use of C++ vector and matrix classes for
scientific calculations typically results in poor
performance w.r.t Fortran or C. This is due
two several factors:
 Use of virtual functions (dynamic polymorphism)
 Temporaries

Polymorphism

 Standard tool in C++
 Requires virtual functions that have big

performance penalties
 Extra memory access
 Compiler cannot optimize around the virtual

function call. It prevents desired features such as
loop unrolling, etc.

 Virtual functions are acceptable if function is
big or not called very often

Polymorphism (II)

 Unfortunately, in scientific code some of the
most useful places for virtual functions are in
inner loop bodies and involve small routines

class HepGenMatrix {

public:

virtual ~HepGenMatrix() {}

virtual int num_row() const = 0;

virtual int num_col() const = 0;

virtual const double & operator()(int row, int col) const =0;

virtual double & operator()(int row, int col) =0

Virtual function dispatch to
operator () results in poor
performance

Static Polymorphism

 Replace dynamic polymorphism with static
(i.e, compile time) polymorphism

 Use of expression templates
 Expression templates heavily depend on the

famous Barton-Nackman trick, also coined
'curiously defined recursive templates'

Barton-Nachman trick

template class<T_leaf>

 class Matrix{
 public:

 T_leaf& assign_leaf(){
 return static_cast<T_leaf>(*this);}

 double operator () (int i, int j){ //delegate to leaf
 return assign_leaf()(i,j)

…

class symmetric_matric : public Matrix<symmetric_matrix>

Static Polymorphism at Work

 The trick is that the base class takes a
template parameter which is the type of the
leaf class. This ensures that the complete
type of an object is known at compile time. No
need for virtual function dispatch

 Methods can be selectively specialized in the
leaf classes (default in the base, overridden
when necessary)

 Leaf classes can have methods which are
unique to the leaf class

Temporaries

When you write:

Vector a(n), b(n), c(n);
 a = b + c + d;

The compiler does the following:

Vector* _t1 = new Vector(n);
for(int i=0; i < n; i++)

_t1(i) = b(i) + c(i);

Vector* _t2 = new Vector(n);
for(int i=0; i < n; i++)

_t2(i) = _t1(i) + b(i);

Temporaries(II)

for(int i=0; i < n; i++)

a(i) = _t2(i) + _t1(i) ;
delete _t2;

delete _t1;

So you have created and deleted two
temporaries!

Performance Implications

 For small arrays (HEP case!) the overhead of
new and delete result in very poor
performance (about 1/10 of C)

 For large arrays the cost is in the
temporaries. It depends on the operation. For
example, they are expensive for + operation

Expression Templates

 Invented independently by Todd Veldhuizen
and Daveed Vandevoorde

 The basic idea is to use operator overloading
to build parse trees.

 Take advantage of the basic fact that a class
can take itself as a template parameter

Example

Array A,B,C,D;
D=A+B+C;

The expression A+B+C could be represented by a type
such as:

X<Array, plus, X<Array, plus, Array>>

Consider:

struct plus{} ; // addition
class Array {}; // some array class

Example (cont)

// X represents a node in a parse tree

template<typename Left, typename Operation, typename Right>
class x{};

//The overloaded operator with does parsing for expressions of the

// form A+B+C+D…
Template<class T>
X<T, plus, Array> operator + (T, Array){

return x<T, plus, Array> ();

}

Example (cont)

With the above code, A+B+C is parsed like this:

Array A,B,C,D;
D=A+B+C;

X<Array, plus, Array> ()+ C;
=X<X<Array, plus, Array>, plus, Array> ();

uBlas

 Consistent use of expression templates to eliminate
virtual function calls and temporaries results in very
high performance (for a C++ standalone library)

 Carefully designed (boost pair reviewed) interface.
Maps Blas calls

 supports conventional dense, packed and basic
sparse vector and matrix storage layouts

 Symmetric, hermitian, triangular matrices, etc
 Template type (T=int, float, double, complex…)
 STL like iterators
 Proxies (ranges, slices) to access views of vector and

matrices

uBlas (ii)

 Extensive checking via consistent use of
exceptions

 Very well documented
 Part of the boost library (i.e, reliable

maintenance)

uBlas (III)

 Real High Performance libraries (like ATLAS)
are using platform specific assembler kernels

 Toon Knapen and Kresimir Fresl are working
on C++ bindings to such kernels, which
already allow the interfacing of uBLAS with
ATLAS

Comments on CLHEP matrix classes

 10 years old already (i.e, a success!)
 But:

 Use of virtual functions
 Inefficient array indexing M[][] (temp objects)
 Temporaries problems
 “Messy” interface

 Linear algebra functions are often part of the class
 M.inverse()???

Conclusion

 uBlas: Modern C++, very professional, very
well documented, part of boost.

 Fast
 “Blas compliant”
 Very clean interface

 Seems a very good candidate to replace
current CLHEP vector and matrix classes

