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Definitions

A manipulation motion
I is the motion of

I one or several robots and of
I one or several objects

I such that each object
I either is in a stable position, or
I is moved by one or several robots.
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Composite robot

Kinematic chain composed of each robot and of each object

T3

R3

R1 R1 R1

R1 R1 R1

B0

B1

B2

T3

R3

robot object

q =
(
q0, · · · , qnr , qnr +1, · · · , qnr +no

)

The configuration space of a composite robot is the cartesian
product of the configuration spaces of each robot and object.

C = Cr1 × Crnb robots × SE(3)nb objets
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Numerical constraints

Constraints to which manipulation motions are subject can be
expressed numerically.

I Numerical constraints:

f (q) = 0,
m ∈ N,
f ∈ C1(C,Rm)

I Parameterizable numerical constraints:

f (q) = f0,
m ∈ N,
f ∈ C1(C,Rm)
f0 ∈ Rm
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Example: robot manipulating a ball

C = [−π, π]6 × R3 (1)
q = (q0, · · · ,q5, xb, yb, zb) (2)

Two states:
I placement: the ball is lying

on the table,
I grasp: the ball is hold by the

end-effector.
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Example: robot manipulating a ball

Each state is defined by a numeri-
cal constraint

I placement

zb = 0

I grasp

xgripper (q0, · · · ,q5)−

 xb
yb
zb

 = 0

Each state is a sub-manifold of the configuration space
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Example: robot manipulating a ball

Motion constraints

Two types of motion:
I transit: the ball is lying and

fixed on the table,
I transfer: the ball moves

with the end-effector.
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Example: robot manipulating a ball

Motion constraints

I transit

xb = x0
yb = y0

} parameterizable

zb = 0 } simple

I transfer

xgripper (q0, · · · ,q5)−

 xb
yb
zb

 = 0
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Foliation

Motion constraints define a foliation of the admissible
configuration space (grasp ∪ placement).

Lg (0) Lf (f1)

Lf (f2)

Lf (f3)

I f : position of the ball

Lf (f1) = {q ∈ C, f (q) = f1}

I g: grasp of the ball

Lg(0) = {q ∈ C,g(q) = 0}

Manipulation motion planning



Foliation

Motion constraints define a foliation of the admissible
configuration space (grasp ∪ placement).

Lg (0) Lf (f1)

Lf (f2)

Lf (f3)

Solution to a manipulation
planning problem is a

concatenation of transit and
transfer paths.
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General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints
I trajectories of the system are subject to

I numerical constraints
I parameterizable numerical constraints.
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the parameter being possibly less than the dimension of the
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I parameter value is constant along trajectories.
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Constraint graph

A manipulation planning problem can be represented by a
manipulation graph.

I Nodes or states are numerical constraints.
I Edges or transitions are parameterizable numerical

constraints.

Placement GraspTransit

Grasp ball

Release ball

Transfer
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Projecting configuration on constraint

Newton-Raphson algorithm
I q0 configuration,
I f (q) = 0 non-linear constraint,
I ε numerical tolerance

Projection (q0, f ):
q = q0; α = 0.95
for i from 1 to max iter:

q = q− α
(

∂f
∂q (q)

)+
f (q)

if ‖f (q)‖ < ε: return q

return failure
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Steering method

Mapping SM from C × C to C1([0,1], C) such that

SM(q0,q1)(0) = q0

SM(q0,q1)(1) = q1
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Constrained steering method

Let
I SM be a steering method
I f ∈ C1(C,Rm) be a numerical constraint.

A constrained steering method ¯SM of constraint f is a steering
method such that

∀t ∈ [0,1], f ( ¯SM(t)) = 0
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Projecting path on constraint

I path: mapping from [0,1] to C
I f (q) = 0 non-linear constraint,

Applying Newton Raphson at each point may result in a
discontinuous path
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Discontinuous Projection

C = R2, f (x , y) = y2 − 1

∂f
∂q

=
(

0 2y
)
,
∂f
∂q

+

=

(
0
1

2y

)
ou
(

0
0

)
yi+1 = yi +

1− y2
i

2yi
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Testing projection continuity

I The initial path is sampled and
successive samples are projected,

I if 2 successive projections are too far
away, an intermediate sample is
selected.

I Choosing appropriate sampling
ensures us continuity of the projection.
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Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear )
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew )
roadmap.insert edge(e, qnear , qnew )
new nodes.append (qnew )

for q ∈ (q1
new , ...,q

ncc
new ):

connect (q, roadmap)
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Select transition

e = select transition(qnear )

Outward edges of each node are given a probability
distribution. The transition from a node to another node is
chosen by random sampling.

Placement GraspTransit

Grasp ball

Release ball

Transfer
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Generate target configuration

qproj = generate target config(qnear ,qrand , e)

Once edge e has been selected, qrand is projected onto the
destination node ndest in a configuration reachable by qnear .

fe(qproj) = fe(qnear )

fdest (qproj) = 0
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Extend

qnew = extend(qnear , qproj , edge)

Project straight path [qnear ,qproj ] on edge constraint:
I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew )← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew ), fe(q) = fe(qnear )
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Connect

connect (q, roadmap)

for each connected component cc not containing q:
for all n closest config q1 to q in cc:

I connect (q, q1)
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Connect

connect (q0, q1):
s0 = state (q0)
s1 = state (q1)
e = transition (n0, n1)
if e and fe(q0) == fe(q1):

if p = projected path (e, q0, q1) collision-free:
roadmap.insert edge (e, q0,q1)

return
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Connecting trees

Manipulation RRT is initialized with qinit , qgoal .
I 2 connected components.
I possible connection.

placement
robot

objectob
je

ct

grasp

qinit

qgoal

possible connection
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Connecting trees: general case

Manipulation RRT is initialized with qinit , qgoal .
I 2 connected components,
I no possible connection.

placement
robot

objectob
je

ct

grasp

qinit

qgoal
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Connecting trees: general case

Manipulation RRT is initialized with qinit , qgoal .
I 2 connected components,
I no possible connection.

placement
robot

objectob
je

ct

grasp

qinit

qgoal

Placement GraspTransit

Grasp ball

Release ball

Transfer
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Crossed foliation transition: generate target
configuration

qproj =
generate target config(qnear ,qrand , e)

q1 ← pick configuration
I in node N1,
I not in same connected

component as qnear

fe1(qproj) = fe1(qnear )

fe2(qproj)= fe2(q1)

fN2(qproj) = 0

N1 N2
Crossed foliation

e1

e2
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Crossed foliation transition: extend

qnew = extend(qnear , qproj , e1)

Project straight path [qnear ,qproj ] on e1 constraint:
I if projection successful and projected path collision free

q2 ← qproj

fe2(q2) = fe2(q1)

fN2(q2) = 0

I q2 is connectable to q1 via e2.
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Relative positions as numerical constraints

Let T1 = T(R1,t1) and T2 = T(R2,t2) be two rigid-body
transformations. The relative transformation T2/1 = T−1

1 ◦ T2
can be represented by a vector of dimension 6:(

u
v

)
where

u = RT
1 (t2 − t1)

RT
1 R2 is the matrix of the

rotation around axis v/‖v‖ and
of angles ‖v‖.
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A few words about the BE
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Thèse CIFRE sur les robots parallèles à cables

En collaboration avec Tecnalia France

Contact : florent@laas.fr
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