
Manipulation motion planning

Florent Lamiraux

CNRS-LAAS, Toulouse, France

Manipulation motion planning

A few examples

Manipulation motion planning

Definitions

A manipulation motion
I is the motion of

I one or several robots and of
I one or several objects

I such that each object
I either is in a stable position, or
I is moved by one or several robots.

Manipulation motion planning

Definitions

A manipulation motion
I is the motion of

I one or several robots and of
I one or several objects

I such that each object
I either is in a stable position, or
I is moved by one or several robots.

Manipulation motion planning

Composite robot

Kinematic chain composed of each robot and of each object

T3

R3

R1 R1 R1

R1 R1 R1

B0

B1

B2

T3

R3

robot object

q =
(
q0, · · · , qnr , qnr +1, · · · , qnr +no

)

The configuration space of a composite robot is the cartesian
product of the configuration spaces of each robot and object.

C = Cr1 × Crnb robots × SE(3)nb objets

Manipulation motion planning

Composite robot

Kinematic chain composed of each robot and of each object

T3

R3

R1 R1 R1

R1 R1 R1

B0

B1

B2

T3

R3

robot object

q =
(
q0, · · · , qnr , qnr +1, · · · , qnr +no

)

The configuration space of a composite robot is the cartesian
product of the configuration spaces of each robot and object.

C = Cr1 × Crnb robots × SE(3)nb objets

Manipulation motion planning

Numerical constraints

Constraints to which manipulation motions are subject can be
expressed numerically.

I Numerical constraints:

f (q) = 0,
m ∈ N,
f ∈ C1(C,Rm)

I Parameterizable numerical constraints:

f (q) = f0,
m ∈ N,
f ∈ C1(C,Rm)
f0 ∈ Rm

Manipulation motion planning

Example: robot manipulating a ball

C = [−π, π]6 × R3 (1)
q = (q0, · · · ,q5, xb, yb, zb) (2)

Two states:
I placement: the ball is lying

on the table,
I grasp: the ball is hold by the

end-effector.

Manipulation motion planning

Example: robot manipulating a ball

Each state is defined by a numeri-
cal constraint

I placement

zb = 0

I grasp

xgripper (q0, · · · ,q5)−

 xb
yb
zb

 = 0

Each state is a sub-manifold of the configuration space

Manipulation motion planning

Example: robot manipulating a ball

Each state is defined by a numeri-
cal constraint

I placement

zb = 0

I grasp

xgripper (q0, · · · ,q5)−

 xb
yb
zb

 = 0

Each state is a sub-manifold of the configuration space

Manipulation motion planning

Example: robot manipulating a ball

Motion constraints

Two types of motion:
I transit: the ball is lying and

fixed on the table,
I transfer: the ball moves

with the end-effector.

Manipulation motion planning

Example: robot manipulating a ball

Motion constraints

I transit

xb = x0
yb = y0

} parameterizable

zb = 0 } simple

I transfer

xgripper (q0, · · · ,q5)−

 xb
yb
zb

 = 0

Manipulation motion planning

Foliation

Motion constraints define a foliation of the admissible
configuration space (grasp ∪ placement).

Lg (0) Lf (f1)

Lf (f2)

Lf (f3)

I f : position of the ball

Lf (f1) = {q ∈ C, f (q) = f1}

I g: grasp of the ball

Lg(0) = {q ∈ C,g(q) = 0}

Manipulation motion planning

Foliation

Motion constraints define a foliation of the admissible
configuration space (grasp ∪ placement).

Lg (0) Lf (f1)

Lf (f2)

Lf (f3)

Solution to a manipulation
planning problem is a

concatenation of transit and
transfer paths.

Manipulation motion planning

General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints
I trajectories of the system are subject to

I numerical constraints
I parameterizable numerical constraints.

Manipulation motion planning

General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints
I trajectories of the system are subject to

I numerical constraints
I parameterizable numerical constraints.

Manipulation motion planning

General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints
I trajectories of the system are subject to

I numerical constraints
I parameterizable numerical constraints, the dimension of

the parameter being possibly less than the dimension of the
constraint.

I parameter value is constant along trajectories.

Manipulation motion planning

General case

In a manipulation problem,
I the state of the system is subject to

I numerical constraints
I trajectories of the system are subject to

I numerical constraints
I parameterizable numerical constraints, the dimension of

the parameter being possibly less than the dimension of the
constraint.

I parameter value is constant along trajectories.

Manipulation motion planning

Constraint graph

A manipulation planning problem can be represented by a
manipulation graph.

I Nodes or states are numerical constraints.
I Edges or transitions are parameterizable numerical

constraints.

Placement GraspTransit

Grasp ball

Release ball

Transfer

Manipulation motion planning

Projecting configuration on constraint

Newton-Raphson algorithm
I q0 configuration,
I f (q) = 0 non-linear constraint,
I ε numerical tolerance

Projection (q0, f):
q = q0; α = 0.95
for i from 1 to max iter:

q = q− α
(

∂f
∂q (q)

)+
f (q)

if ‖f (q)‖ < ε: return q

return failure

Manipulation motion planning

Steering method

Mapping SM from C × C to C1([0,1], C) such that

SM(q0,q1)(0) = q0

SM(q0,q1)(1) = q1

Manipulation motion planning

Constrained steering method

Let
I SM be a steering method
I f ∈ C1(C,Rm) be a numerical constraint.

A constrained steering method ¯SM of constraint f is a steering
method such that

∀t ∈ [0,1], f (¯SM(t)) = 0

Manipulation motion planning

Projecting path on constraint

I path: mapping from [0,1] to C
I f (q) = 0 non-linear constraint,

Applying Newton Raphson at each point may result in a
discontinuous path

Manipulation motion planning

Discontinuous Projection

C = R2, f (x , y) = y2 − 1

∂f
∂q

=
(

0 2y
)
,
∂f
∂q

+

=

(
0
1

2y

)
ou
(

0
0

)
yi+1 = yi +

1− y2
i

2yi

Manipulation motion planning

Testing projection continuity

I The initial path is sampled and
successive samples are projected,

I if 2 successive projections are too far
away, an intermediate sample is
selected.

I Choosing appropriate sampling
ensures us continuity of the projection.

Manipulation motion planning

Testing projection continuity

I The initial path is sampled and
successive samples are projected,

I if 2 successive projections are too far
away, an intermediate sample is
selected.

I Choosing appropriate sampling
ensures us continuity of the projection.

Manipulation motion planning

Testing projection continuity

I The initial path is sampled and
successive samples are projected,

I if 2 successive projections are too far
away, an intermediate sample is
selected.

I Choosing appropriate sampling
ensures us continuity of the projection.

Manipulation motion planning

Testing projection continuity

I The initial path is sampled and
successive samples are projected,

I if 2 successive projections are too far
away, an intermediate sample is
selected.

I Choosing appropriate sampling
ensures us continuity of the projection.

Manipulation motion planning

Testing projection continuity

I The initial path is sampled and
successive samples are projected,

I if 2 successive projections are too far
away, an intermediate sample is
selected.

I Choosing appropriate sampling
ensures us continuity of the projection.

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Algorithm
Manipulation RRT

Manipulation RRT

qrand = shoot random config()
for each connected component:

qnear = nearest neighbour(qrand , roadmap)
e = select transition(qnear)
qproj = generate target config(qnear ,qrand ,
e)
qnew = extend(qnear , qproj , edge)
roadmap.insert node(qnew)
roadmap.insert edge(e, qnear , qnew)
new nodes.append (qnew)

for q ∈ (q1
new , ...,q

ncc
new):

connect (q, roadmap)

Manipulation motion planning

Select transition

e = select transition(qnear)

Outward edges of each node are given a probability
distribution. The transition from a node to another node is
chosen by random sampling.

Placement GraspTransit

Grasp ball

Release ball

Transfer

Manipulation motion planning

Generate target configuration

qproj = generate target config(qnear ,qrand , e)

Once edge e has been selected, qrand is projected onto the
destination node ndest in a configuration reachable by qnear .

fe(qproj) = fe(qnear)

fdest (qproj) = 0

Manipulation motion planning

Extend

qnew = extend(qnear , qproj , edge)

Project straight path [qnear ,qproj] on edge constraint:
I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew)← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew), fe(q) = fe(qnear)

Manipulation motion planning

Extend

qnew = extend(qnear , qproj , edge)

Project straight path [qnear ,qproj] on edge constraint:
I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew)← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew), fe(q) = fe(qnear)

Manipulation motion planning

Extend

qnew = extend(qnear , qproj , edge)

Project straight path [qnear ,qproj] on edge constraint:
I if projection successful and projected path collision free

qnew ← qproj

I otherwise (qnear ,qnew)← largest path interval tested as
collision-free with successful projection.

∀q ∈ (qnear ,qnew), fe(q) = fe(qnear)

Manipulation motion planning

Connect

connect (q, roadmap)

for each connected component cc not containing q:
for all n closest config q1 to q in cc:

I connect (q, q1)

Manipulation motion planning

Connect

connect (q0, q1):
s0 = state (q0)
s1 = state (q1)
e = transition (n0, n1)
if e and fe(q0) == fe(q1):

if p = projected path (e, q0, q1) collision-free:
roadmap.insert edge (e, q0,q1)

return

Manipulation motion planning

Connecting trees

Manipulation RRT is initialized with qinit , qgoal .
I 2 connected components.
I possible connection.

placement
robot

objectob
je

ct

grasp

qinit

qgoal

possible connection

Manipulation motion planning

Connecting trees: general case

Manipulation RRT is initialized with qinit , qgoal .
I 2 connected components,
I no possible connection.

placement
robot

objectob
je

ct

grasp

qinit

qgoal

Manipulation motion planning

Connecting trees: general case

Manipulation RRT is initialized with qinit , qgoal .
I 2 connected components,
I no possible connection.

placement
robot

objectob
je

ct

grasp

qinit

qgoal

Placement GraspTransit

Grasp ball

Release ball

Transfer

Manipulation motion planning

Crossed foliation transition: generate target
configuration

qproj =
generate target config(qnear ,qrand , e)

q1 ← pick configuration
I in node N1,
I not in same connected

component as qnear

fe1(qproj) = fe1(qnear)

fe2(qproj)= fe2(q1)

fN2(qproj) = 0

N1 N2
Crossed foliation

e1

e2

Manipulation motion planning

Crossed foliation transition: extend

qnew = extend(qnear , qproj , e1)

Project straight path [qnear ,qproj] on e1 constraint:
I if projection successful and projected path collision free

q2 ← qproj

fe2(q2) = fe2(q1)

fN2(q2) = 0

I q2 is connectable to q1 via e2.

Manipulation motion planning

Crossed foliation transition: extend

qnew = extend(qnear , qproj , e1)

Project straight path [qnear ,qproj] on e1 constraint:
I if projection successful and projected path collision free

q2 ← qproj

fe2(q2) = fe2(q1)

fN2(q2) = 0

I q2 is connectable to q1 via e2.

Manipulation motion planning

Relative positions as numerical constraints

Let T1 = T(R1,t1) and T2 = T(R2,t2) be two rigid-body
transformations. The relative transformation T2/1 = T−1

1 ◦ T2
can be represented by a vector of dimension 6:(

u
v

)
where

u = RT
1 (t2 − t1)

RT
1 R2 is the matrix of the

rotation around axis v/‖v‖ and
of angles ‖v‖.

Manipulation motion planning

A few words about the BE

Manipulation motion planning

Thèse CIFRE sur les robots parallèles à cables

En collaboration avec Tecnalia France

Contact : florent@laas.fr

Manipulation motion planning

