
GenoM Manual
For GenoM version 3

Sara Fleury – sara.fleury@laas.fr
Matthieu Herrb – matthieu.herrb@laas.fr
Anthony Mallet – anthony.mallet@laas.fr

Cédric Pasteur

Copyright 2009-2010 c©LAAS/CNRS

November 18, 2011

Contents
1 Introduction 1

2 Component model 3

3 GenoM overview 5

4 A minimal example 7

5 Input file format 9
5.1 Overview . 9
5.2 Preprocessing . 9
5.3 Dotgen grammar . 10
5.4 Dotgen specification . 14
5.5 Identifiers and reserved keywords . 15
5.6 Line directives . 16
5.7 Module declaration . 16
5.8 Type declaration . 16
5.9 Constant declaration . 17

6 GenoM IDL mappings 19
6.1 C mappings . 19

6.1.1 Scoped names . 19
6.1.2 Mapping for constants . 19
6.1.3 Mapping for basic data types . 20
6.1.4 Mapping for enumerated types . 20
6.1.5 Mapping for strings . 20
6.1.6 Mapping for arrays . 21
6.1.7 Mapping for structure types . 21
6.1.8 Mapping for union types . 21
6.1.9 Mapping for sequence types . 22

6.2 C++ mappings . 22
6.2.1 Scoped names . 22
6.2.2 Mapping for constants . 23
6.2.3 Mapping for basic data types . 23
6.2.4 Mapping for enumerated types . 23
6.2.5 Mapping for strings . 24
6.2.6 Mapping for arrays . 24
6.2.7 Mapping for structure types . 24
6.2.8 Mapping for union types . 25
6.2.9 Mapping for sequence types . 25

iv

7 Running GenoM 27
7.1 Synopsis . 27
7.2 Description . 27
7.3 General options . 28
7.4 Template options . 29
7.5 Environment variables . 29

8 Templates 31
8.1 The template command . 31
8.2 The engine command . 33
8.3 The dotgen command . 34

8.3.1 dotgen genom . 34
8.3.2 dotgen template . 35
8.3.3 dotgen input . 36
8.3.4 dotgen parse . 36
8.3.5 dotgen types . 36
8.3.6 dotgen components . 37

8.4 The language command . 37
8.5 Type objects subcommands . 41

Bibliography 43

Index 45

1

Introduction

2

Component model

3

GenoM overview

4

A minimal example

5

Input file format
This chapter describes the GenoM Input File Format (dotgen) semantics and gives the syntax
for dotgen grammatical constructs.

5.1 Overview

The GenoM Input File Format (dotgen) is the language used to formally describe a GenoM
component in terms of services and data types it provides. A description written in dotgen
completely defines the interface and the internals of a component.

A description of the dotgen preprocessing is presented in section 5.2, Preprocessing. The
grammar is presented in section 5.3, Dotgen grammar, and associated semantics is described
in the rest of this chapter either in place or through references to other sub sections of this
chapter.

A source file containing a dotgen component specification must have a ".gen" extension.
The description of the dotgen grammar uses a syntax notation that is similar to Extended
Backus-Naur Format (EBNF). Table 5.1, dotgen EBNF symbols, lists the symbols used in
this format and their meaning.

5.2 Preprocessing

A dotgen specification consists of one or more files that are preprocessed. The preprocessing
performs file inclusion and macro substitution and is controlled by directives introduced by
lines having # as the first character other than white space. The preprocessing is done by the
C preprocessor available on the host system and configured during the build of GenoM. It is
invoked as a separate process.

Symbol Meaning
::= Definition.
| Alternation.

text Nonterminals.
"text" Terminals.
(. . .) Grouping.
{ . . . } Repetition: may occur zero or any number of times.
[. . .] Option: may occur zero or one time.

Table 5.1: dotgen EBNF symbols

10 CHAPTER 5. INPUT FILE FORMAT

Preprocessor directives beginning with # have their own syntax (namely, the C preprocessor
syntax), independent of the dotgen language and not described in this document. See for
instance [1] for a documentation. Directives may appear anywhere in the source file but are
not seen nor interpreted by GenoM. The primary use of the preprocessing facilities is to include
definitions (especially type definitions) from other dotgen specifications. Text in files included
with a #include directive is treated as if it appeared in the including file.

5.3 Dotgen grammar
(1) start ::= [spec]

(2) spec ::= { statement } statement

(3) statement ::= idlstatement
| genomstatement

(4) idlstatement ::= (module | const_dcl | type_dcl) ";"

(5) genomstatement ::= (template | component | ids | attribute | port |
task | service) ";"

(6) template ::= TEMPLATE identifier ["{" attr_list "}"]

(7) component ::= "component" identifier ["{" attr_list "}"]

(8) port ::= port_dir port_kind "<" type_spec ">" identifier
port_array

(9) port_dir ::= "inport"
| "outport"

(10) port_array ::= ["[" "]"]

(11) port_kind ::= [HANDLE]

(12) ids ::= scope_push_ids "{" member_list "}"

(13) attribute ::= "attribute" inited_ids_member_list

(14) task ::= "task" identifier ["{" attr_list "}"]

(15) service ::= "service" identifier "(" param_list ")" ["{"
attr_list "}"]

(16) attr_list ::= { attr ";" } attr ";"

(17) attr ::= "doc" ":" string_literals
| "version" ":" string_literals
| "lang" ":" string_literals
| "email" ":" string_literals
| "require" ":" string_list
| "codels-require" ":" string_list
| "clock-rate" ":" const_expr time_unit
| "period" ":" const_expr time_unit
| "delay" ":" const_expr time_unit
| "priority" ":" positive_int_const
| "scheduling" ":" "real-time"
| "stack" ":" positive_int_const size_unit
| "throw" ":" event_list
| "task" ":" identifier
| "interrupts" ":" identifier_list
| "before" ":" identifier_list
| "after" ":" identifier_list
| "validate" ":" validate
| "codel" codel

(18) validate ::= identifier "(" param_list ")"

5.3. DOTGEN GRAMMAR 11

(19) codel ::= event_list ":" identifier "(" param_list ")" "yield"
event_list

(20) event_list ::= identifier_list

(21) param_list ::= [{ param "," } param]

(22) param ::= ids_param_dir inited_ids_member
| port_param_dir inited_port_member

(23) inited_ids_member_list ::= { inited_ids_member "," } inited_ids_member

(24) inited_ids_member ::= named_ids_member ["=" initializer]

(25) named_ids_member ::= ids_member
| ids_member "::" identifier
| "::" identifier

(26) ids_member ::= identifier
| ids_member param_member

(27) inited_port_member ::= named_port_member ["=" initializer]

(28) named_port_member ::= port_member ["::" identifier]

(29) port_member ::= identifier
| port_member param_member

(30) param_member ::= "." identifier
| "[" positive_int_const "]"

(31) ids_param_dir ::= "in"
| "out"
| "inout"

(32) port_param_dir ::= "inport"
| "outport"

(33) initializer_list ::= [{ initializer "," } initializer]

(34) initializer ::= initializer_value
| ":" string_literals
| initializer_value ":" string_literals

(35) initializer_value ::= const_expr
| "{" initializer_list "}"
| "[" positive_int_const "]" "=" const_expr
| "[" positive_int_const "]" "=" "{" initializer_list

"}"
| "." identifier "=" const_expr
| "." identifier "=" "{" initializer_list "}"

(36) module ::= "module" module_name "{" (idlspec "}" | "}")

(37) module_name ::= identifier

(38) idlspec ::= { idlstatement } idlstatement

(39) const_dcl ::= "const" const_type identifier "=" const_expr

(40) const_type ::= integer_type
| char_type
| boolean_type
| floating_pt_type
| octet_type
| string_type
| named_type

(41) type_dcl ::= constructed_type
| "typedef" alias_list
| forward_dcl

12 CHAPTER 5. INPUT FILE FORMAT

(42) constructed_type ::= struct_type
| union_type
| enum_type

(43) alias_list ::= (type_spec | alias_list ",") declarator

(44) struct_type ::= "struct" scope_push_struct "{" member_list "}"

(45) union_type ::= "union" scope_push_union "switch" "("
switch_type_spec ")" "{" switch_body "}"

(46) enum_type ::= "enum" identifier "{" enumerator_list "}"

(47) forward_dcl ::= ("struct" | "union") identifier

(48) declarator ::= simple_declarator
| array_declarator

(49) simple_declarator ::= identifier

(50) array_declarator ::= (simple_declarator | array_declarator)
fixed_array_size

(51) fixed_array_size ::= "[" positive_int_const "]"

(52) type_spec ::= simple_type_spec
| constructed_type_spec

(53) simple_type_spec ::= base_type_spec
| template_type_spec
| named_type

(54) constructed_type_spec ::= constructed_type

(55) named_type ::= scoped_name

(56) base_type_spec ::= boolean_type
| integer_type
| floating_pt_type
| char_type
| octet_type
| any_type

(57) template_type_spec ::= sequence_type
| string_type
| fixed_type

(58) integer_type ::= signed_int
| unsigned_int

(59) floating_pt_type ::= float_type
| double_type

(60) signed_int ::= signed_longlong_int
| signed_long_int
| signed_short_int

(61) unsigned_int ::= unsigned_longlong_int
| unsigned_long_int
| unsigned_short_int

(62) unsigned_short_int ::= "unsigned" "short"

(63) unsigned_long_int ::= "unsigned" "long"

(64) unsigned_longlong_int ::= "unsigned" "long" "long"

(65) signed_short_int ::= "short"

(66) signed_long_int ::= "long"

(67) signed_longlong_int ::= "long" "long"

(68) float_type ::= "float"

5.3. DOTGEN GRAMMAR 13

(69) double_type ::= "double"

(70) char_type ::= "char"

(71) boolean_type ::= "boolean"

(72) octet_type ::= "octet"

(73) any_type ::= "any"

(74) string_type ::= "string" ["<" positive_int_const ">"]

(75) sequence_type ::= "sequence" "<" simple_type_spec (","
positive_int_const ">" | ">")

(76) fixed_type ::= "fixed" ["<" positive_int_const ","
positive_int_const ">"]

(77) switch_type_spec ::= integer_type
| char_type
| boolean_type
| enum_type
| named_type

(78) switch_body ::= { case } case

(79) member_list ::= { member ";" } member ";"

(80) member ::= (type_spec | member ",") declarator

(81) case ::= case_label_list type_spec declarator ";"

(82) case_label_list ::= { case_label } case_label

(83) case_label ::= ("case" const_expr | "default") ":"

(84) enumerator_list ::= { enumerator "," } enumerator

(85) enumerator ::= identifier

(86) scope_push_struct ::= identifier

(87) scope_push_union ::= identifier

(88) scope_push_ids ::= "ids"

(89) scoped_name ::= [[scoped_name] "::"] identifier

(90) const_expr ::= or_expr

(91) positive_int_const ::= const_expr

(92) or_expr ::= { xor_expr "|" } xor_expr

(93) xor_expr ::= { and_expr "^" } and_expr

(94) and_expr ::= { shift_expr "&" } shift_expr

(95) shift_expr ::= { add_expr (">>" | "<<") } add_expr

(96) add_expr ::= { mult_expr ("+" | "-") } mult_expr

(97) mult_expr ::= { unary_expr ("*" | "/" | "%") } unary_expr

(98) unary_expr ::= ["-" | "+" | "~"] primary_expr

(99) primary_expr ::= literal
| "(" const_expr ")"
| named_type

(100) literal ::= "TRUE"
| "FALSE"
| integer_literal
| "<float_literal>"
| "<fixed_literal>"
| "<char_literal>"
| string_literals

(101) string_literals ::= { string_literal } string_literal

14 CHAPTER 5. INPUT FILE FORMAT

(102) string_list ::= { string_literals "," } string_literals

(103) time_unit ::= ["s" | "ms" | "us"]

(104) size_unit ::= ["k" | "m"]

(105) identifier ::= "[A-Za-z_][A-Za-z0-9_]*"
| "s"
| "ms"
| "us"
| "k"
| "m"
| "real-time"
| TEMPLATE
| "component"
| "ids"
| "attribute"
| "version"
| "lang"
| "email"
| "require"
| "codels-require"
| "clock-rate"
| "task"
| "period"
| "delay"
| "priority"
| "scheduling"
| "stack"
| "codel"
| "validate"
| "yield"
| "throw"
| "doc"
| "interrupts"
| "before"
| "after"
| "data"
| HANDLE
| "inport"
| "outport"
| "in"
| "out"
| "inout"

(106) identifier_list ::= { identifier "," } identifier

5.4 Dotgen specification

A dotgen specification consists of one or more statements. Statements are either IDL state-
ments, GenoM statements or cpp line directives. The syntax is:

(2) spec ::= { statement } statement

(3) statement ::= idlstatement
| genomstatement

(4) idlstatement ::= (module | const_dcl | type_dcl) ";"

(5) genomstatement ::= (template | component | ids | attribute | port |
task | service) ";"

5.5. IDENTIFIERS AND RESERVED KEYWORDS 15

Definitions are named be the mean of identifiers: see section 5.5, Identifiers and reserved
keywords. Cpp line directives are normally issued by the C preprocessor and are used to define
the current input file name and line number (section 5.6, Line directives).

An IDL statement defines types (see section 5.8, Type declaration), constants (see sec-
tion 5.9, Constant declaration) or IDL modules containing types and constants (see section 5.7,
Module declaration). The syntax follows closely the subset the OMG IDL specification corre-
sponding to type and constants definitions (see Part I, chapter 7 of [2]). Note that this subset
of the dogten grammar is not in any manner tied to OMG IDL and may diverge from future
OMG specifications.

A GenoM statement defines components, communication ports, services and execution
contexts called tasks.

5.5 Identifiers and reserved keywords

An identifier is a sequence of ASCII alphabetic, digit, and underscore ("_") characters. The
first character must be an ASCII alphabetic character.

(105) identifier ::= "[A-Za-z_][A-Za-z0-9_]*"
| "s"
| "ms"
| "us"
| "k"
| "m"
| "real-time"
| TEMPLATE
| "component"
| "ids"
| "attribute"
| "version"
| "lang"
| "email"
| "require"
| "codels-require"
| "clock-rate"
| "task"
| "period"
| "delay"
| "priority"
| "scheduling"
| "stack"
| "codel"
| "validate"
| "yield"
| "throw"
| "doc"
| "interrupts"
| "before"
| "after"
| "data"
| HANDLE
| "inport"
| "outport"
| "in"
| "out"

16 CHAPTER 5. INPUT FILE FORMAT

| "inout"

Words that are reserved keywords in the dotgen language are valid identifiers where their
use is not ambiguous.

5.6 Line directives

Line directives are normally not used. They are inserted by cpp, as a result of preprocessing the
input file (section 5.2). They can be used mostly to achieve special effects on error reporting
or similar.

A line directive starts with the # sign, followed by the current line number and file name
of the source file, optionally followed by a numeric flag. The flag is never used by GenoM.
Its meaning depends on the C preprocessor used: see for instance chapter 1.8, C preprocessor
output, of the FSF C preprocessor [1].

The file name and line number replace the current value kept internally by GenoM and are
used in error reporting messages as well as a few other places.

5.7 Module declaration

A module definition satisfies the following syntax:
(36) module ::= "module" module_name "{" (idlspec "}" | "}")

(37) module_name ::= identifier

(38) idlspec ::= { idlstatement } idlstatement

The only effect of a module is to scope IDL identifiers. It is similar to a C++ or Java
namespace; it is considered good practice to enclose your type definitions inside a module
definition to prevent name clashes between components.

5.8 Type declaration

Type declarations define new data types and associate a name (an identifier) with it. The
typedef keyword can be used to name an existing type. The constructed types struct, union
and enum also name the type they define. The syntax is the following:

(41) type_dcl ::= constructed_type
| "typedef" alias_list
| forward_dcl

(42) constructed_type ::= struct_type
| union_type
| enum_type

(43) alias_list ::= (type_spec | alias_list ",") declarator

A type specification is the description of a type. It can be used in a typedef construct or
anywhere a typed value is expected.

(52) type_spec ::= simple_type_spec
| constructed_type_spec

(53) simple_type_spec ::= base_type_spec
| template_type_spec
| named_type

5.9. CONSTANT DECLARATION 17

(56) base_type_spec ::= boolean_type
| integer_type
| floating_pt_type
| char_type
| octet_type
| any_type

(57) template_type_spec ::= sequence_type
| string_type
| fixed_type

(54) constructed_type_spec ::= constructed_type

(55) named_type ::= scoped_name

(89) scoped_name ::= [[scoped_name] "::"] identifier

(48) declarator ::= simple_declarator
| array_declarator

(49) simple_declarator ::= identifier

5.9 Constant declaration

(39) const_dcl ::= "const" const_type identifier "=" const_expr

6

GenoM IDL mappings
GenoM IDL is independent of the programming language used to implement the services and
internals of a component. In order to use the GenoM generated source code, it is necessary for
programmers to know how to access the service parameters and ports from their programming
languages. This chapter defines the mapping of GenoM IDL constructs to the supported
programming languages.

The mapping between GenoM IDL and a programming language diverges from the OMG
CORBA standard. This is unfortunate, because this might lead to some confusion for the
developers used to OMG CORBA, but it was necessary to define mappings well targetting
real-time platforms. The design strategy that guided the definition of those mappings was to
try to have contiguous memory segments, that do not require memory management primitives,
for most of the data types. Only unbounded string and sequences do not follow this scheme.

GenoM currently implements mappings for the C and C++ languages. For the C language,
see section 6.1, C mappings. For the C++ language, see section 6.2, C++ mappings,

6.1 C mappings

6.1.1 Scoped names

The C mappings always use the global name for a type or a constant. The C global name
corresponding to a GenoM IDL global name is derived by converting occurrences of "::" to
"_" (an underscore) and eliminating the leading underscore.

6.1.2 Mapping for constants

In C, constants defined in dotgen are #defined. For instance, the following IDL:

const long longint = 1;
const string str = "string example";

would map into

#define longint 1
#define str "string example"

The identifier can be referenced at any point in the user’s code where a literal of that type
is legal.

20 CHAPTER 6. GENOM IDL MAPPINGS

IDL C
boolean bool
unsigned short uint16_t
short int16_t
unsigned long uint32_t
long int32_t
unsigned long long uint64_t
long long int64_t
float float
double double
char char
octet uint8_t
any type any not implemented yet

Table 6.1: Basic data types C mappings

6.1.3 Mapping for basic data types

The basic data types have the mappings shown in Table 6.1, Basic data types C mappings.
Integer types use the C99 fixed size integer types as provided by the stdint.h standard header.
Users do not have to include this header: the template mapping generation procedure output
the appropriate #include directive along with the mappings for the integer types.

6.1.4 Mapping for enumerated types

The C mapping of an IDL enum type is an unsigned, 32 bits wide integer. Each enumerator in
an enum is #defined with an appropriate unsigned integer value conforming to the ordering
constraints.

For instance, the following IDL:

enum e {
value1,
value2

};

would map, according to the scoped names rules, into

typedef uint32_t e
#define e_value1 1
#define e_value2 2

6.1.5 Mapping for strings

GenoM IDL bounded strings are mapped to nul terminated character arrays (i.e., C strings).
Unbounded strings are mapped to a pointer on such a character array.

For instance, the following OMG IDL declarations:

typedef string unbounded;
typedef string<16> bounded;

6.1. C MAPPINGS 21

would map into

typedef char *unbounded;
typedef char bounded[16];

6.1.6 Mapping for arrays

GenoM IDL arrays map directly to C arrays. All array indices run from 0 to size-1.
For instance, the following IDL:

typedef long array[4][16];

would map into

typedef int32_t array[4][16];

6.1.7 Mapping for structure types

GenoM IDL structures map directly onto C structs. Note that these structures may poten-
tially include padding.

For instance, the following IDL:

struct s {
long a;
long b;

};

would map into

typedef struct {
int32_t a;
int32_t b;

} s;

6.1.8 Mapping for union types

GenoM IDL unions map onto C structs. The discriminator in the enum is referred to as _d,
the union itself is referred to as _u.

For instance, the following IDL:

union u switch(long) {
case 1: long a;
case 2: float b;
default: char c;

};

would map into

typedef struct {
int32_t _d;
union {

int32_t a;

22 CHAPTER 6. GENOM IDL MAPPINGS

float b;
char c;

} _u;
} u;

6.1.9 Mapping for sequence types

GenoM IDL sequences mapping differ slightly for bounded or unbouded variations of the
sequence. Both types maps onto a C struct, with a _maximum, _length and _buffermembers.

For unbounded sequences, buffer points to a buffer of at most _maximum elements and
containing _length valid elements. An additional member _release is a function pointer
that can be used to release the storage associated to the _buffer and reallocate it. It is the
responsibility of the user to maintain the consistency between those members.

For bounded sequences, buffer is an array of at most _maximum elements and containing
_length valid elements. Since _buffer is an array, no memory management is necessary for
this data type.

For instance, the following IDL:

typedef sequence<long> unbounded;
typedef sequence<long,16> bounded;

would map into

typedef struct {
uint32_t _maximum, _length;
int32_t *_buffer;
void (*release)(void *_buffer);

} unbounded;

typedef struct {
const uint32_t _maximum;
uint32_t _length;
int32_t _buffer[16];

} bounded;

6.2 C++ mappings

6.2.1 Scoped names

The C++mappings for scoped names use C++ scopes. IDL modules are mapped to namespaces.
For instance, the following IDL:

module m {
const string str = "scoped string";

};

would map into

namespace m {
const std::string str = "scoped string";

}

6.2. C++ MAPPINGS 23

IDL C++
boolean bool
unsigned short uint16_t
short int16_t
unsigned long uint32_t
long int32_t
unsigned long long uint64_t
long long int64_t
float float
double double
char char
octet uint8_t
any type any not implemented yet

Table 6.2: Basic data types C++ mappings

6.2.2 Mapping for constants

GenoM IDL constants are mapped to a C++ constant. For instance, the following IDL:

const long longint = 1;
const string str = "string example";

would map into

const int32_t longint = 1;
const std::string str = "string example";

6.2.3 Mapping for basic data types

The basic data types have the mappings shown in Table 6.2, Basic data types C++ mappings.
Integer types use the C99 fixed size integer types as provided by the stdint.h standard header
(since the C++ cstdint header is not part of the C++ at the time of writing this document).
Users do not have to include this header: the template mapping generation procedure output
the appropriate #include directive along with the mappings for the integer types.

6.2.4 Mapping for enumerated types

The C++ mapping of an IDL enum type is the corresponding C++ enum. An additional
constant is generated to guarantee that the type occupies a 32 bits wide integer.

For instance, the following IDL:

enum e {
value1,
value2

};

would map, according to the scoped names rules, into

24 CHAPTER 6. GENOM IDL MAPPINGS

enum e {
value 1,
value 2,
_unused = 0xffffffff,

};

6.2.5 Mapping for strings

GenoM IDL bounded strings are mapped to nul terminated character arrays (i.e., C strings)
wrapped inside the specific genom::bounded_string class. Unbounded strings are mapped to
std:string provided by the C++ standard.

For instance, the following OMG IDL declarations:

typedef string unbounded;
typedef string<16> bounded;

would map into

typedef std::string unbounded;
typedef genom::bounded_string<16> bounded;

The genom::bounded_string provides the following interface:

namespace genom3 {
template<std::size_t L> struct bounded_string {

char c[L];
};

}

This minimalistic definition will be refined before the official 3.0 GenoM release.

6.2.6 Mapping for arrays

GenoM IDL arrays map directly to C++ arrays. All array indices run from 0 to size-1.
For instance, the following IDL:

typedef long array[4][16];

would map into

typedef int32_t array[4][16];

6.2.7 Mapping for structure types

GenoM IDL structures map directly onto C++ structs. Note that these structures may
potentially include padding.

For instance, the following IDL:

struct s {
long a;
long b;

};

6.2. C++ MAPPINGS 25

would map into

struct s {
int32_t a;
int32_t b;

};

6.2.8 Mapping for union types

GenoM IDL unions map onto C structs. The discriminator in the enum is referred to as _d,
the union itself is referred to as _u.

For instance, the following IDL:

union u switch(long) {
case 1: long a;
case 2: float b;
default: char c;

};|

would map into

struct u {
int32_t _d;
union {

int32_t a;
float b;
char c;

} _u;
};

Note that the C++ standard does not allow union members that have a non-trivial con-
structor. Consequently, the C++ mapping for such kind of unions is not allowed in GenoM
either. This concerns sequences and strings, and structures or unions that contain such a
type. You should thus avoid to define such datatypes in GenoM IDL in order to maximize the
portability of your definitions.

6.2.9 Mapping for sequence types

GenoM IDL sequences mapping differ for bounded or unbouded variations of the sequence.
The unbounded sequence maps onto a C++ std::vector provided by the C++ standard.
The bounded sequences maps onto the specific genom3::bounded_vector class.

For instance, the following IDL:

typedef sequence<long> unbounded;
typedef sequence<long,16> bounded;

would map into

typedef std::vector<int32_t> unbounded;
typedef genom3::bounded_vector<int32_t, 16> bounded;

26 CHAPTER 6. GENOM IDL MAPPINGS

The genom::bounded_vector provides the following interface:

namespace genom3 {
template<typename T, std::size_t L> struct bounded_vector {

T e[L];
};

}

This minimalistic definition will be refined before the official 3.0 GenoM release.

7

Running GenoM
7.1 Synopsis

genom3 [-l] [-h] [--version]
genom3 [-I dir] [-D macro[=value]] [-E|-n] [-v] [-d] file.gen
genom3 [general options] template [template options] file.gen

7.2 Description

The GenoM program is a source code generator that is used to generate software components
from a formal description file.

The input file is expected to contain the description of the services, input and output
ports, data types definitions and execution contexts of a software component, written in the
dotgen language.

The dotgen specification is first processed by a C preprocessor before it is parsed by GenoM
and transformed into an abstract syntax tree. The program used as a C preprocessor can be
changed with the CPP environment variable. GenoM accepts -I and -D options that are
passed inchanged to the cpp program.

The abstract syntax tree is exported in a format suitable to a generator engine that is
in charge of a template execution for actual source code generation. The generator engine
provides a scripting language and a set of procedures for use by templates. The directory
where source code for the generator engine is searched can be changed with the -s option.

Templates are a set of source files that serve as the basis for source code generation.
Templates source files are interpreted by the generator engine. They can contain code written
in the scripting language provided by the generator engine, that computes generated output,
or regular source code that is appended directly to the generated code. Intermediate files
and scripts are saved in a temporary directory before they are copied to the final destination
directory. The -T option changes the path of the temporary directory. The -d option will
keep all temporary files instead of deleting them once the program terminates. This is useful
only for template development and debugging.

The choice of a template depends on the kind of source code that is wanted by the user.
Refer to the documentation of the templates for a description on what they do. The names of
the available templates can be listed with the -l option. The directory in which templates
are looked for can be changed with the -t option.

The GenoM program accepts general options that affect the general program behaviour.
GenoM can also pass template options to the template. These options will only affect the
template behaviour.

28 CHAPTER 7. RUNNING GENOM

7.3 General options

-I dir
Add the directory dir to the list of directories to be searched for included files. The dir
argument is passed as-is to the cpp program via the same -I option.

When -r option is in effect (either explicitely passed on the command line, or configured
by default during the build process), an implicit -I directive pointing to the directory
of the input file is appended to the end of the list of searched directories.

-D macro[=value]
Predefine macro, with definition 1 or value if given, in the same way as a #define
directive would do it. This option is passed as-is to the cpp program.

If you are invoking genom from the shell, you may have to use the shell quoting character
to protect shell’s special characters such as spaces.

An implicit macro __GENOM__ is always defined and contains the version of the genom
program. This can be used to divert some lines in source files meant to be included by
other tools that genom, and that contain syntax that genom does not understand.

-E
Stop after the preprocessing stage, and do not run genom proper. The output of cpp
is sent to the standard output. genom exits with a non-zero status if there are any
preprocessing errors, such as a non-existent included file.

-n, --parse-only
Stop after the input file parsing stage, and do not invoke any template. This is useful to
check the syntax of the input file. Any errors or warning are reported and genom exits
with a non-zero status if there are errors.

-N, --dump
Stop after the input file parsing stage, do not invoke any template and dump the parsed
specification in dotgen format. This is mostly useful for debugging genom itself or to
view the actual specification built by genom from a complex (set of) file(s). Any errors
or warning are reported and genom exits with a non-zero status if there are errors.

-l, --list
Print to the standard output the list of available templates. Each line of output contains
the name of a template and the genom engine that is uses (currently, only Tcl-based
templates are supported).

By default, the standard templates directory is searched, but any -t option will be taken
into account.

-t path, --tmpldir=path
Use path as the directory containing templates. This can be a colon separated list of
directories which are search in order.

This option is useful only for templates not installed in the genom standard directories,
i.e. share/genom/<version>/templates or share/genom/site-templates.

path is searched for files matching dir/*/template.tcl, where * is the actual template
name.

7.4. TEMPLATE OPTIONS 29

-s dir, --sysdir=dir
Use dir as the directory holding genom engine files. This option is useful if non-standard
engines are to be used. The default value is share/genom/<version>/engines.

dir should contain directories named after the engine name.

-T dir, --tmpdir=dir
Use dir as the temporary directory holding intermediate files. See also the environment
variable TMPDIR.

-r, --rename
Some cpp programs cannot handle correctly files with a .gen extension. This option
will make genom call cpp with an input file ending in .c, linked to the real input file.

-v, --verbose
Force genom to be more verbose while processing input files.

-d, --debug
Activate some debugging options. In particular, temporary files are not deleted. Useful
for debugging genom itself or generator engines.

--version
Display the version number of the invoked GenoM.

-h, --help
Print usage summary and exit.

7.4 Template options

-h, --help
Templates might define their own specific options. The -h option is always defined,
and prints a summary of supported options. See the template manual for a detailed
description. Template options should be passed after the template name, and before the
input file name.

7.5 Environment variables

0
Define the C preprocessor program to use. The default depends on the value configured
during the genom build process, but it is most often gcc -E -xc on Linux systems.

The CPPprogram must recognize -I and -D arguments.

2
The value of GENOM_TEMPLATE_PATH is a colon-separated list of directories, much like
PATH, where GenoM looks for templates. Setting this variable overrides the default
search path, but any -t option takes precedence over this variable.

0
Path to the directory holding temporary files. Defaults to /tmp.

8

Templates
8.1 The template command

template require file

Source tcl file and make its content available to the template files. The file name can be
absolute or relative. If it is relative, it is interpreted as relative to the template directory
(see dotgen template dir).

Parameters:
file Tcl input file to source. Any procedure that it creates is made

available to the template files.

template parse [args list] [file/string/raw file ...]

This is the main template function that parses a template source file and instanciate it, writ-
ing the result into the current template directory (or in a global variable). This procedure
should be invoked for each source file that form a template.
When invoking template parse, the last two arguments are the destination file or string.
A destination file is specified as file file (the filename is relative to the current template
output directory). Alternatively, a destination string is specified as string var, where var
is the name of a global variable in which the template engine will store the result of the
source instantiation.
The output destination file or string is generated by the template from one or several input
source. An input source is typically a source file, but it can also be a string or a raw
(unprocessed) text. An input source file is specified with file file, where file is a file
name relative to the template directory. An input source read from a string is specified as
string text, where text is any string, processed by the template engine as usual. Finally,
a raw, unprocessed source that is copied verbatim to the destination, is specified as raw
text, where text is any string.
Additionnaly, each input source, defined as above, can be passed a list of optional arguments
by using the special args list construction as the first argument of the template parse
command. The list given after args can be retrieved from the template source file from the
usual argv variable.

Examples:
template parse file mysrc file mydst

32 CHAPTER 8. TEMPLATES

Will parse the input file mysrc, process it and save the result in mydst.

template parse args {one two} file mysrc file mydst

Will do the same as above, but the template code in the input file mysrc will have the
list {one two} accessible via the argv variable.

template parse string "test" file mydst

Will process the string "test" and save the result in mydst.

Parameters:
args This optional argument should be followed by a list of arguments

to pass to the template source file. It should be the very first
argument, otherwise it is ignored. Each element of the list is
available from the template source file in the argv array.

perm This optional argument may be set to specify the permissions to
be set for the created file.

template link src dst

Link source file src to destination file dst. If relative, the source file src is interpreted as
relative to the template directory and dst is interpreted as relative to the current output
directory. Absolute file name can be given to override this behaviour.

template options { pattern body ... }

Define the list of supported options for the template. Argument is a Tcl switch-like script
that must define all supported options. It consists of pairs of pattern body. If an option
matching the pattern is passed to the template, the body script is evaluated. A special body
specified as "-" means that the body for the next pattern will be used for this pattern.

Examples:
template options {

-h - –help { puts "help option" }

}

This will make the template print the text "help option" whenever -h or –help option
is passed to the template.

template arg

Return the next argument passed to the template, or raise an error is no argument remains.

8.2. THE ENGINE COMMAND 33

template usage [string]

With a string argument, this procedure defines the template "usage" message. Unless
the template redefines a -h option with template options, the default behaviour of the
template is to print the content of the template usage string when -h or –help option is
passed to the template.
template usage, when invoked without argument, returns the last usage message defined.

template message [string]

Print string so that it is visible to the end-user. The text is sent on the standard error
channel unconditionnaly.

template fatal [string]

Print an error message and stop. In verbose mode, print the source location as reported by
[info frame].

8.2 The engine command

engine mode [[+-]modespec ...]

Set miscellaneous engine operating mode. The command can be invoked without argument
to retrieve the current settings for all supported modes. The command can also be invoked
with one or more mode specification to set these modes (see modespec argument below).
The list of supported modes is the following:

• verbose: turns on or off the verbosity of the engine.

• overwrite: when turned on, newly generated files will overwrite existing files without
warning. When turned off, the engine will stop with an error if a newly generated file
would overwrite an existing file. overwrite is by default off.

• move-if-change: when turned on, an existing file with the same content as a newly
generated file will not be modified (preserving the last modification timestamp). When
off, files are systematically updated. move-if-change is on by default.

• debug: when on, this mode preserves temporary files and tcl programs generated in
the temporary directory. Useful only for debugging the template.

Example:
engine mode -overwrite +move-if-change

Parameters:
modespec A mode specification string. Supported modes are verbose,

overwrite, move-if-change merge-if-change and debug. If
mode string is prefixed with a dash (-), it is turned off. If mode
is prefixed with a plus (+) or nothing, it is turned on.

34 CHAPTER 8. TEMPLATES

Returns:
When called without arguments, the command returs the current configuration
of all engine modes.

engine merge-tool tool

Change the engine merge tool. When the engine is in ’merge-if-change’ mode, a merge tool
is inkoked with the two conflicting versions of a file. If the merge tools exits successfuly, the
generated file is replaced by the (manually) merged version.

Parameters:
tool The path to the merge tool, or builtin keywords ’interactive’ or

’auto’.

engine chdir dir

Change the engine output directory. By default, files are generated in the current directory.
This command can be used to generate output in any other directory.

Parameters:
dir The new output directory, absolute or relative to the current

working directory.

engine pwd

Return the current engine output directory.

8.3 The dotgen command

8.3.1 dotgen genom

Those commands implement access to genom program parameters or general information.

dotgen genom program

Returns the absolute path to the GenoM executable currently running.

dotgen genom cmdline

Returns a string containing the options passed to the GenoM program.

8.3. THE DOTGEN COMMAND 35

dotgen genom version

Returns the full version string of the GenoM program.

dotgen genom debug

Returns a boolean indicating whether genom was invoked in debugging mode or not.

dotgen genom stdout [on]

With optional boolean argument on, turns on or off the standard output channel of the
template engine.
Without argument, the procedure returns the current activation status of the standard
output channel.

Parameters:
[on] Turn on/off standard output channel.

Returns:
When called without argument, returns a boolean indicating the current status
(on/off) of the standard output channel.

8.3.2 dotgen template

Those commands return information about the template currently being parsed.

dotgen template name

Return the current template name.

dotgen template dir

Return a path to the current template directory (the directory holding the template.tcl file).

dotgen template sysdir

Return a path to the genom system directory.

dotgen template tmpdir

Return a path to the temporary directory where the template engine writes its temporary
files.

36 CHAPTER 8. TEMPLATES

8.3.3 dotgen input

Those commands return information about the current genom input file (.gen file).

dotgen input file

Return the full path to the current .gen file.

dotgen input base

Return the base name of the current .gen file, i.e. the file name with all directories stripped
out.

dotgen input dir

Return the directory name of the current .gen file.

dotgen input notice

Return the copyright notice (as text) found in the .gen file. This notice can actually be any
text and is the content of the special comment starting with the three caracters ’/’ ’*’ ’/’,
near the beginning of the .gen file.

8.3.4 dotgen parse

dotgen parse file|string data

Parse .gen data either from a file or from a string. When parsing is successful, the corre-
sponding objects are exported to the engine.

Parameters:
file|string Specify if parsing from a file or from a string.

data When parsing from a file, data is the file name. When parsing
from a string, data is the data to be parsed.

8.3.5 dotgen types

This command return information about the type definitions in the .gen file.

dotgen types [pattern]

This command returns the list of type objects that are defined in the current .gen file. This
list may be filtered with the optional pattern argument. Each element of the returned list
is a type command that can be used to access detailed information about that particular
type object.

8.4. THE LANGUAGE COMMAND 37

Parameters:
[pattern] Filter on the type names. The filter may contain a glob-like

pattern (with * or ? wildcards). Only the types whose name
match the pattern will be returned.

Returns:

A list of type objects.

8.3.6 dotgen components

This command return information about the components definitions in the .gen file.

dotgen components [pattern]

This command returns the list of components that are defined in the current .gen file (nor-
mally just one). This list may be filtered with the optional pattern argument. Each element
of the returned list is a component command that can be used to access detailed information
about each particular component object.

Parameters:
[pattern] Filter on the component name. The filter may contain a glob-like

pattern (with * or ? wildcards). Only the components whose
name match the pattern will be returned.

Returns:

A list of component objects.

8.4 The language command

language mapping ?type?

Generate and return the mapping of type for the current language, or all types if no argument
is given. The returned string is a valid source code for the language.

Parameters:
type A ’type’ object.

language declarator type [var]

Return the abstract declarator for type or for a variable var of that type, in the current
language.

Parameters:
type A type object.

38 CHAPTER 8. TEMPLATES

var A string representing the name of a variable of type type.

language address type [var]

Return an expression evaluating to the address of a variable in the current language.

Parameters:
type A type object.

var A string representing the name of a variable of type type.

language dereference type [var]

Return an expression dereferencing a pointer on a variable in the current language.

Parameters:
type A type object.

var A string representing the name of a variable of type type.

language argument type kind [var]

Return an expression that declares a parameter var of type type, passed by value or reference
according to kind.

Parameters:
type A type object.

kind Must be "value" or "reference".

var A string representing the name of a variable of type type.

language pass type kind [var]

Return an expression that passes var of type type as a parameter, by value or reference
according to kind.

Parameters:
type A type object.

kind Must be "value" or "reference".

var A string representing the name of a variable of type type.

language member type mlist

Return the language construction to access a member of a type. mlist is a list interpreted as
follow: if it starts with a letter, type should be an aggregate type (like struct); if it starts
with a numeric digit, type should be an array type (like sequence).

8.4. THE LANGUAGE COMMAND 39

Parameters:
type A type object

mlist A list of hierachical members to access.

language signature codel [separator [location]]

Return the signature of a codel in the current language. If separator is given, it is a string
that is inserted between the return type of the codel and the codel name (for instance, a \n
in C so that the symbol name is guaranteed to be on the first column).

Parameters:
codel A codel object.

separator A string, inserted between the return type and the codel symbol
name.

location A boolean indicating whether to generate #line directive corre-
sponding to the codel definition in .gen file.

language invoke codel params

Return a string corresponding to the invocation of a codel in the current language.

Parameters:
codel A codel object.

params The list of parameters passed to the codel. Each element of this
list must be a valid string in the current language corresponding
to each parameter value or reference to be passed to the codel.

lang language

Set the current language for procedures that output a language dependent string

Parameters:
language The language name. Must be c or c++.

cname {string|object}

Return the cannonical name of the string or the GenoM object, according to the current
language.
If a regular string is given, this procedure typically maps IDL :: scope separator into the
native symbol in the given language. If a codel object is given, this procedure returns the
symbol name of the codel in the given language.

Parameters:
string The name to convert.

object A GenoM object. Only class codel is supported at the moment.

40 CHAPTER 8. TEMPLATES

indent [#n|++|--] ?text...?

Output text, indented to the current indent level. Each text argument is followed by a
newline. Indent level can be changed by passing an absolute level with #n, or incremented
or decremented with ++ or --.

Parameters:
text The string to output.

comment [-c] text

Return a string that is a valid comment in the current language.

Parameters:
c The string to use as a comment character (overriding current

language).

text The string to be commented.

fileext [kind]

Return the cannonical file extension for the current language.

Parameters:
kind Must be one of the strings source or header.

--- [-column] text ?text...? filler

Print a string of length column (70 by default), starting with text and filled with the last
character of the filler string.

Parameters:
text The text to fill.

filler The filler character

column The desired length of the returned string.

wrap [-column] text ?prefix? ?sep?

Chop a string into lines of length column (70 by default), prefixed with prefix (empty by
default). The string is split at spaces by default, or sep if given.

Parameters:
text The text to fill.

prefix A string prefixed to each line

sep The separator for breaking text

8.5. TYPE OBJECTS SUBCOMMANDS 41

column The desired maximum length of each line

8.5 Type objects subcommands

$type foreach varlist ?with prefix? body

Evaluate body for each member of type, with varlist set to the current element. The result
of the command is an empty string.
varlist is a list of one up to three variable names. The first variable is set to the current
current type element, the second variable is set to the element kind and the third variable (if
present) is set to a string representing the code (in the current language) for accessing the
current element. If "with prefix" was given, this string is prefixed with the prefix string, so
that if prefix contains the top variable containing type, the computed expresion will directly
access the current element.
Exploration of the type tree is done in depth-first order. body shall return a list of strings
(maybe empty) that are concatenated and passed to "indent" when the function returns.
Note: an endless recursion is possible if the type in question has a recursive definition (e.g.
a structure contains a sequence of the same structure). This potentially endless recursion is
allowed on purpose, but it is important that you handle this situation in the body script. A
potentially endless recursion can be detected if your body script encounters either a forward
struct or a forward union. It is up to the caller to determine what to do in this case, but
this typically involves returning ’continue’ at some point to skip further exploration of that
branch.

Parameters:
$type A type object.

varlist varlist A list of variable names of 1, 2 or 3 elements. First
variable is set to the current element kind, second variable is
set to the current element of object while iterating and optional
third element is set to the current element and the hierarchy of
elements leading to the current element.

prefix A string prepended to the 3rd element of varlist. Typically con-
tains a reference to the variable holding $type.

body A script evaluated for each element of object.

42 CHAPTER 8. TEMPLATES

Bibliography
[1] Free Software Foundation. The C preprocessor. http://gcc.gnu.org/onlinedocs/cpp/.

[2] Object Management Group. CORBA specification, version 3.1. Part I: CORBA interfaces. http:
//www.omg.org/spec/CORBA/3.1/Interfaces/PDF.

http://gcc.gnu.org/onlinedocs/cpp/
http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF
http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF

Index
Symboles
--- (template command) 40

C
cname (template command) 39
comment (template command) 40

D
dotgen . 9

grammar . 10
identifier . 15
specification . 14

dotgen (template command) 34–37
components . 37
genom . 34, 35
cmdline . 34
debug . 35
program . 34
stdout . 35
version . 35

input . 36
base . 36
dir . 36
file . 36
notice . 36

parse . 36
template . 35
dir . 35
name . 35
sysdir . 35
tmpdir . 35

types . 36

E
engine (template command) 33, 34

chdir . 34
merge-tool . 34
mode . 33
pwd . 34

F
fileext (template command) 40
foreach (template command) 41

I
identifier . 15
indent (template command) 40

input
file format . 9
preprocessing . 9

L
lang (template command) 39
language (template command) 37–39

address . 38
argument . 38
declarator . 37
dereference . 38
invoke . 39
mapping . 37
member . 38
pass . 38
signature . 39

P
preprocessing . 9

T
template (template command) 31–33

arg . 32
fatal . 33
link . 32
message . 33
options . 32
parse . 31
require . 31
usage . 33

template command
--- . 40
cname . 39
comment . 40
dotgen . 34–37
engine . 33, 34
fileext . 40
foreach . 41
indent . 40
lang . 39
language . 37–39
template . 31–33
wrap . 40

W
wrap (template command) 40

	Title
	Contents
	Introduction
	Component model
	GenoM overview
	A minimal example
	Input file format
	Overview
	Preprocessing
	Dotgen grammar
	Dotgen specification
	Identifiers and reserved keywords
	Line directives
	Module declaration
	Type declaration
	Constant declaration

	GenoM IDL mappings
	C mappings
	Scoped names
	Mapping for constants
	Mapping for basic data types
	Mapping for enumerated types
	Mapping for strings
	Mapping for arrays
	Mapping for structure types
	Mapping for union types
	Mapping for sequence types

	C++ mappings
	Scoped names
	Mapping for constants
	Mapping for basic data types
	Mapping for enumerated types
	Mapping for strings
	Mapping for arrays
	Mapping for structure types
	Mapping for union types
	Mapping for sequence types

	Running GenoM
	Synopsis
	Description
	General options
	Template options
	Environment variables

	Templates
	The template command
	The engine command
	The dotgen command
	dotgen genom
	dotgen template
	dotgen input
	dotgen parse
	dotgen types
	dotgen components

	The language command
	Type objects subcommands

	Bibliography
	Index

