GengM Manual

For G&€NoM version 3

Revision 2.99.14, updated October 2012

Sara Fleury

Matthieu Herrb matthieu.herrb@laas.fr
Anthony Mallet anthony.mallet@laas.fr
Cédric Pasteur

mailto:matthieu.herrb@laas.fr
mailto:anthony.mallet@laas.fr

Ge€NoM3 is copyright (© 2009-2012 LAAS/CNRS. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WAR-
RANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

genom-pcpp is copyright (© 2004,2010 Anders Magnusson (ragge@ludd.luth.se). All rights re-
served.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LI-
ABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

mailto:ragge@ludd.luth.se

Table of Contents

Introduction. 1
Component model 3
GENOM OVEIVIEW 5
A minimal example..... 7
Input file format 9
5.1 PreprOCeSSIIEottt et e 9
5.1.1 #1ine direCtives. .ot 9
5.1.2 #pragma requires directives........... ... 10
5.1.3 #pragma provides directives.t e 10
5.2 Elements of a GENoM3 specification. e 10
5.3 Component declarationttt 10
5.4 Interface declarationttt e e 12
5.5 IDS declaration 12
5.6 Task declaration 12
5.7 Port declaration 13
5.8 Attribute declaration. e 13
5.9 Service declarationt 13
5.10 ServiCe PATAIMETEIS\ttt ettt ettt e e e e e e e e 14
5.11 Codel declarationo 14
5.12 Module declaration 15
5.13 Constant declaration 15
5.14 Type declaration. 15
5.15 Type Specification 15
5.16 Identifiers and reserved Keywords. 16
5.17 Grammar TEfEreIICEttt 17
GENoM IDL mappings 23
G700 ' 0o 0= 23
6.1.1 SCOPEA MAINIESottt et et e et e e e e e e e 23
6.1.2 Mapping for constants 23
6.1.3 Mapping for basic data types ... 23
6.1.4 Mapping for enumerated tYPesottt 24
6.1.5 Mapping for StTingSttt e 24
6.1.6 Mapping for AITAYSo u ittt e e 24
6.1.7 Mapping for Structure types.o 25
6.1.8 Mapping for Union tyPesottt 25
6.1.9 Mapping for SEQUENCE GYPES .« ..ttt ettt 25
6.1.10 Mapping for POTt tYPeS . .« v vttt 26

6.2 G IAPPIIES - - .t e vttt e ettt e e e e e e e 27

6.2.1 SCOPEA MAIIIES . . .\ttt t ettt e et e et ettt e e e e e 27

6.2.2 Mapping for Constantst 27
6.2.3 Mapping for basic data types 27
6.2.4 Mapping for enumerated tyPes it 27
6.2.5 Mapping for SErINESottt 28
6.2.6 Mapping fOor AITAYSttt e 28
6.2.7 Mapping for Structure types.o 28
6.2.8 Mapping for Union GyPesot 29
6.2.9 Mapping for SEqUENCE GYPESottt 29

7 Running genom. 31
7.1 DeSCTIPION « ettt 31
7.2 General OPUIOIISottt ettt e e e e e 31
7.3 Template OpPIONS 33
7.4 Environment variables 33
8 Templates.......... .. 35
8.1 The TCL backend e e 35
8.1.1 Runtime template information i 35
Source additional template code 35
Generate template CoOntent. 35
Create symbolic inks. 36
Define template Optionst 36
Template dependenciesot 36
Retrieve options passed to templates.oii e 36
Define template help string i 37

Print runtime information i 37

Abort template ProCessing.t 37

8.1.2 Backend configuration i 37
Engine output configuration e 37
Automatic merge of generated CONTENTo.uiuin i 38
Change output dir€CtOryt e e e 38

Get current output direCtoryo 38

8.1.3 Input file information 38
Genom program path and command line.......... i i 38
Template path and directorieso 39

Input file name and path ... e 39
Process additional input.......... 40

Data type definitions from the specification............ i 40
Components definitions from the specification............ 40

8.1.4 Language dependent code generation., 40
Target programming languaget 40
Cannonical 0bJECt NAIME e e 41
Generate comment STIINESottt e 41
Cannonical file eXtension i e 41
Generate indented teXt 41
Generate filler SETing 41

Chop bloCKS Of tEXt « .ottt e 42

IDL type language Mappingueu ottt e 42

Code for type declarations.o 42

Code for variable addresses 42

Code for dereferencing variables 42

Code for declaring functions argumentsuoit it 43

Code for passing functions arguments.ottt 43

Code for accessing structure memberso 43

Code for declaring codel SIgnatureso 43

Code for calling codels 44

Indices. 45
Index of CONCEPES . ..ottt e 45

Index of TCL backend proCedures ittt e 46

1

Introduction

2

Component model

3

GE€NgM overview

4

A minimal example

5

Input file format

This chapter describes the GENoM3 Input File Format (dotgen) semantics and gives the syntax for dotgen
grammatical constructs. dotgen is the language used to formally describe a GENoM component in terms
of services and data types it provides. A description written in dotgen completely defines the interface
and the internals of a component.

A description of the dotgen preprocessing is presented in Section 5.1 [Preprocessing], page 9. The
grammar is presented in Section 5.17 [Grammar reference|, page 17. Associated semantics is described
in the rest of this chapter either in place or through references to other sub sections of this chapter.

A source file containing a dotgen component specification must have a ‘.gen’ extension. The de-
scription of the dotgen grammar uses a syntax notation that is similar to EBNF (Extended Backus-Naur
Format). The following table lists the symbols used in this format and their meaning.

Symbol Meaning

1i= Definition.

I Alternation.

text Nonterminals.
"text" Terminals.
C...) Grouping.
{...} Repetition: may occur zero or any number of times.
[...] Option: may occur zero or one time.

Table 5.1: dotgen EBNF symbols

5.1 Preprocessing

A dotgen specification consists of one or more files that are preprocessed. The preprocessing is controlled
by directives introduced by lines having # as the first character other than white space. Preprocessor
directives have their own syntax (namely, the C preprocessor syntax), independent of the dotgen language
and not entirely described in this document. For instance, see The C preprocessor' for a comprehensive
documentation.

The C preprocessor used by G&€MoM is invoked as a separate process from libexec/genom-pcpp by
default. This is the C preprocessor from the pcc project (http://pcc.ludd.ltu.se/). This can be
changed by setting the environement variable CPP, See Section 7.4 [Environment variables], page 33.
However, note that if you change the default, you will loose some functionalities of the genom-pcpp
program. See Section 5.1.2 [#pragma requires|, page 10.

The primary use of the preprocessing facility is to include definitions (especially type definitions)
from other dotgen specifications. Directives may appear anywhere in the source file but are not seen nor
interpreted by G€NoM. For instance, text in files included with a #include directive is treated as if it
appeared in the including file. However, the preprocessor outputs some information, also as # directives,
that are available to G€NoM. These are described in the following sections.

5.1.1 #line directives

Line directives are inserted by the C preprocessor. They inform the G€NoM parser about the line number
and file name where each token was defined. Line directives can also be inserted manually to achieve
special effect on error reporting or similar.

! http: //gcc.gnu.org/onlinedocs/cpp/

http://gcc.gnu.org/onlinedocs/cpp/
http://pcc.ludd.ltu.se/
http://gcc.gnu.org/onlinedocs/cpp/

10 CHAPTER 5: INPUT FILE FORMAT

A line directive starts with the #1line token, followed by the current line number, the file name of the
source file and an optional numeric flag. The numeric flag is never used by G&NoM. Its meaning depends
on the C preprocessor used.

#line linenum ["filename" [flag] 1]

The file name and line number replace the current location information. Line number is automatically
incremented after each \n.

5.1.2 #pragma requires directives

#pragma requires is recognized by both the genom-pcpp preprocessor and G€MoM. This can be used to in-
dicate an external dependency on a package using the pkg-config utility (see http://www.freedesktop.
org/wiki/Software/pkg-config).

#pragma requires "package [>= version]"

#pragma requires accepts a string argument in the form package [>= version]. genom-pcpp inter-
prets it by running pkg-config --cflags on the string argument. It then adds the resulting -I and -D
flags as if they had been passed on the command line (see Section 7.2 [General options|, page 31). Note
that the flags are added at the current processing location, so they do not influence already preprocessed
input. The pkg-config utility is found in PATH, or via the PKG_CONFIG environment variable if defined
(see Section 7.4 [Environment variables], page 33).

G€NoM also recognizes #pragma requires. It handles it by adding the string argument to the require
property of all the components defined in a specification (see Section 5.3 [Component declaration],
page 10).

5.1.3 #pragma provides directives

5.2 Elements of a G€"oM3 specification

A dotgen specification consists of one or more statements. Statements are either GENoM statements, IDL
statements. cpp directives (see Section 5.1 [Preprocessing], page 9) are handled at the lexical level and
do not interfere with the specification grammar.

(1) specification { statement }

(2) statement ::= component
| interface
| idl-statement

(4) idl-statement ::= module
| const-dcl ";"
| type-dcl ";"

Definitions are named by the mean of identifiers, see Section 5.16 [Reserved keywords|, page 16.

A G®"oM statement defines components (see Section 5.3 [Component declaration], page 10) or inter-
faces (see Section 5.4 [Interface declaration], page 12).

An IDL statement defines types (see Section 5.14 [Type declaration]|, page 15), constants (see
Section 5.13 [Constant declaration], page 15) or IDL modules containing types and constants (see
Section 5.12 [Module declaration], page 15). The syntax follows closely the subset the OMG IDL speci-
fication corresponding to type and constants definitions (see Chapter 7 of CORBA specification, Object
Management Group, version 3.1. Part I: CORBA interfaces). Note that this subset of the dogten gram-
mar is not in any manner tied to OMG IDL and may diverge from future OMG specifications.

5.3 Component declaration

(5) component ::= "component" component-name component-body ";"

http://www.freedesktop.org/wiki/Software/pkg-config
http://www.freedesktop.org/wiki/Software/pkg-config

11

(6) component-name ::= identifier

(13) component-body i:= ["{" exports "}"]

(14) exports ::= { export }

(15) export ::= idl-statement
| property
| ids

| task

| port

| attribute
| service

(7) component-property ::= ("doc" string-literals | "version"
string-literals | "lang" string-literals |
"email" string-literals | "requires"
string-list | "codels-require" string-list
| "clock-rate" const-expr time-unit |
"provides" interface-list | "uses"
interface-list) ";"
A component declaration describes a instance of the GE"oM component model. It is defined by a unique
name (an identifier) that also defines an IDL scope for any embedded types.

Components export objects from the G&MoM component model, namely: IDS (see Section 5.5 [IDS
declaration], page 12), tasks (see Section 5.6 [Task declaration], page 12), ports (see Section 5.7 [Port dec-
laration], page 13), attributes (see Section 5.8 [Attribute declaration], page 13) or services (see Section 5.9
[Service declaration], page 13).

Components may also define new types via IDL statements. These types will be defined within the
component scope.

A number of properties can be attached to a component:

doc A string that describes the functionality of the component.

version The component version number, as a string

lang The programming language of the codels interface.

email A string containing the e-mail address of the author of the component.

requires A list of dependencies of the component (see Section 5.1.2 [#pragma requires|, page 10).
Each string should contain a package name in pkg-config format.

codels-requires
A list of dependencies of the codels. Each string should contain a package name in pkg-
config format.

clock-rate
The period of the internal component clock. It is usually not necessary to define it explicitly.
If the component defines periodic task, the component clock period will be automatically
computed as the greatest common divisor of the period of all periodic tasks.

provides A list of interfaces (see Section 5.4 [Interface declaration], page 12) that the component im-
plements. All objects from the interface are imported as-is into the component description.
Ports and services may be further refined once imported, typically by defining codels (see
Section 5.11 [Codel declaration], page 14) that implement the services.

uses A list of interfaces (see Section 5.4 [Interface declaration], page 12) that the component
uses. Ports are imported in the opposite direction (e.g. a port out is imported as a port

12 CHAPTER 5: INPUT FILE FORMAT

in. Services are imported as remote objects that can be accessed wvia codel parameters (see
Section 5.11 [Codel declaration], page 14). Other objects are imported as-is.

5.4 Interface declaration

n.n
>

(8) interface "interface" interface-scope component-body

(9) interface-scope ::= identifier

(11) interface-property ::= "extends" interface-list ";"

An interface declaration is basically the same as a component declaration (see Section 5.3 [Component
declaration], page 10) but is meant to be shared between several components. Although any object can be
defined in an interface, it will typically only declare service prototypes and ports that are to be provided
or used by components.

In addition to regular component properties, an interface can also define the following properties:

extends A list of interfaces that are imported as-is into the current one. All objects from the extended
interfaces appear as if they had been defined in the extending interface.

5.5 IDS declaration

(16) ids ::= ids-name "{" member-list "}" ";"

(17) ids-name ::= "ids"

5.6 Task declaration

(18) task ::= "task" identifier opt-properties ";"
(26) opt-properties ::= ["{" properties "}"]
(27) properties ::= { property }
task-propert = erio const-expr time-unit ela
(19) k-prop y ("P iod" P 3 : | "del y"
const-expr time-unit | "priority"
positive-int-const | "scheduling" "real-time" |

"stack" positive-int-const size-unit) ";"
(30) codel-property ::= opt-async "codel" (codel ";" | fsm-codel ";")

Tasks define an execution context suitable for running activities (see Section 5.3 [Component declaration],
page 10). A task may define a state machine and associated codels (see Section 5.11 [Codel declaration],
page 14). The state machine starts in the start state when the task is created during component
initialization.

Tasks are named can also define the following properties:

period The granularity of the codel scheduler. Periodic task will sequence the codels they manage
at that frequency.

delay The delay from the beginning of each period after which codels are run. This can be used
to delay two tasks running at the same period in the same component.

priority Can be used to prioritize different tasks whithin the same component.

scheduling real-time
This indicates that the task requires real-time scheduling. This may not be supported by
all templates.

stack Defines the required stack size for this task. The stack size should be big enough to run all
codels that the task manages.

SECTION 5.9: SERVICE DECLARATION 13

5.7 Port declaration

(20)

(22)
21)

port

opt-multiple
port-dir

"port" opt-multiple port-dir type-spec
identifier ";"

["multiple"]
n in"
n out n

Ports implement the data flow between components as a publish/subscribe model. Ports have a name
and a type and can be either out (for publishing data) or in (for subscribing to a sibling out port).

The optional multiple qualifier defines a dynamic list of ports of the given type, indexed by strings.
In this case, ports are created or destroyed dynamically be the codels.

5.8 Attribute declaration

(23)

(32)

(33)

(26)
Qn

(29)

attribute

attribute-parameters

attribute-parameter

opt-properties

properties

service-property

5.9 Service declaration

(24)

(25)

(34)
(35)

(26)
Qn
(28)

(29)

service

service-kind

service-parameters

service-parameter
opt-properties

properties

property

service-property

"attribute" identifier "(" attribute-parameters

n.n
>

")" opt-properties
[{ attribute-parameter "," }
attribute-parameter]
parameter-dir parameter-variable
opt-initializer

["{" properties "}"]

{ property }

("task" identifier |

identifier-list |

"interrupts"
identifier-list |
"validate" codel)

"before"
"after" identifier-list |

n.n
)

service-kind identifier "(" service-parameters
")" opt-properties ";"

"function"

"activity"

[{ service-parameter "," } service-parameter]

parameter-dir type-spec declarator
opt-initializer

["{" properties "}"]

{ property }

component-property
interface-property

task-property

service-property

codel-property

throw-property

("task" identifier |
identifier-list |

"interrupts"
identifier-list |
"validate" codel)

"before"
"after" identifier-list |

n.n
)

14

(30)
(43)

5.10
(33)

(35)

(39

(40)

(45)
(46)
47

(48)

5.11

(41)
(42)

(36)
(37)

(43)
(38)
(39)

(40)

(44)

codel-property

opt-async

Service parameters

attribute-parameter

service-parameter

parameter-dir

parameter-variable

opt-initializer
initializers

initializer

initializer-value

Codel declaration

codel

fsm-codel

codel-parameters

codel-parameter

opt-async
opt-parameter-src

parameter-dir

parameter-variable

event-list

CHAPTER 5: INPUT FILE FORMAT

opt-async "codel" (codel ";" | fsm-codel ";")

["async"]

parameter-dir parameter-variable
opt-initializer

parameter-dir type-spec declarator
opt-initializer

n inll
Ilout n
"inout"

identifier
parameter-variable "." identifier
parameter-variable "[" positive-int-const "]"

["=" initializer]
[{ initializer "," } initializer]
initializer-value

":" string-literals

initializer-value string-literals

const-expr
"{" initializers "1}"

"[" positive-int-const "]" "=" const-expr

"[" positive-int-comnst "]" "=" "{" initializers
Il}ll

"." identifier "=" const-expr

"." identifier "=" "{" initializers "}"

identifier " (" codel-parameters ")"

event-list identifier "(" codel-parameters ")"
"yields" identifier-list

[{ codel-parameter "," } codel-parameter]

opt-parameter-src parameter-dir (
parameter-variable

| parameter-variable "::" identifier EHHA
identifier)

["async"]

["ids" | "local" | "port" | "remote"]

Ilinll

"Out n

"inout"

identifier

parameter-variable "." identifier

parameter-variable "[" positive-int-const "]"

"<" identifier-list ">"

SECTION 5.15: TYPE SPECIFICATION 15

5.12 Module declaration

A module definition satisfies the following syntax:

(49) module

"module" module-name "{" module-body "}" ";"

(50) module-name identifier

(51) module-body [idl-statements]

(3) idl-statements { idl-statement } idl-statement

The only effect of a module is to scope IDL identifiers. It is similar to a C++ or Java namespace; it
is considered good practice to enclose your type definitions inside a module definition to prevent name
clashes between components.

5.13 Constant declaration

(52) const-dcl ::= "const" const-type identifier "=" const-expr
(53) const-type ::= integer-type
char-type

boolean-type
floating-pt-type
octet-type
string-type
named-type

5.14 Type declaration

Type declarations define new data types and associate a name (an identifier) with it. The typedef
keyword can be used to name an existing type. The constructed types struct, union and enum also
name the type they define. The syntax is the following:

(564) type-dcl constructed-type
| "typedef" alias-list

| forward-dcl

(55) constructed-type ::= struct-type
| union-type
| enum-type

(66) alias-list ::= (type-spec | alias-list ",") declarator

5.15 Type specification

A type specification is the description of a type. It can be used in a typedef construct or anywhere a
typed value is expected.

(65) type-spec simple-type-spec

| constructed-type-spec

(66) simple-type-spec base-type-spec
| template-type-spec

| named-type

(69) base-type-spec boolean-type

| integer-type

| floating-pt-type
| char-type

| octet-type

| any-type

16

(70) template-type-spec

(67)
(68)
(101)
(61)

constructed-type-spec
named-type
scoped-name

declarator

(62) simple-declarator

5.16

CHAPTER 5: INPUT FILE FORMAT

sequence-type

string-type

fixed-type

constructed-type

scoped-name

[[scoped-name] "::"] identifier

simple-declarator
array-declarator

identifier

Identifiers and reserved keywords

An identifier is a sequence of ASCII alphabetic, digit, and underscore (_) characters
must be an ASCII alphabetic character.

(117) identifier

"[A-Za-z-] [A-Za-z0-9-] *"
ngn

IlmS n

"
nen

"
"real-time"
"interface"
"component"
"ids"
"attribute"
"function"
"activity"
"version"
"lang"
"email"
"requires"
"codels-require"
"clock-rate"
"task"
"task"
"period"
"delay"
"priority"
"scheduling"
"stack"
"codel"
"validate"
"yields"
"throws"
"doc"
"interrupts"
"before"
"after"
"handle"
"port"

Ilinll

. The first character

SECTION 5.17: GRAMMAR REFERENCE

(118)

Words that are reserved keywords

identifier-list

ambiguous.

5.17

1
(2)

3
(4)

(8)
(6)
<)

(8)

(9)
(10)
(11)
(12)
(13)
(14)
(185)

(16)
17)

Grammar reference

specification

statement

idl-statements

idl-statement

component
component-name

component-property

interface
interface-scope
interface-name
interface-property
interface-list
component-body
exports

export

ids

ids—name

Ilout n
"inout"
"local"

n async n
"remote"
"extends"
"provides"
"uSeS n
"multiple"

{ identifier "," }

identifier

17

in the dotgen language are valid identifiers where their use is not

{ statement }

component
interface
idl-statement

{ idl-statement } idl-statement

module

const-dcl ";"

type-dcl ";"

"component" component-name component-body ";"
identifier

("doc" string-literals | "version"
string-literals | "lang" string-literals |
"email" string-literals | "requires"
string-list | "codels-require" string-list

| "clock-rate" const-expr time-unit |

"provides" interface-list | "uses"

interface-list)

"interface" interface-scope component-body

identifier

identifier

n.n
)

"extends" interface-list ";"

{ interface-name ",

[||{|| exports ll}ll]
{ export }

idl-statement
property

ids

task

port
attribute
service

" } interface-name

ids-name "{" member-list "}" ";"

"idS"

n.
>

18

(18)
(19)

(20)

(21)

(22)
(23)

(24)

(25)

(26)
27
(28)

(29)

(30)
(31)
(32)

(33)

(34)
(35)

(36)
(37)

(38)
(39)

task

task-property

port

port-dir

opt-multiple

attribute

service

service-kind

opt-properties
properties

property

service-property

codel-property
throw-property

attribute-parameters

attribute-parameter

service-parameters

service—para.meter

codel-parameters

codel-parameter

opt-parameter-src

parameter-dir

CHAPTER 5: INPUT FILE FORMAT

"task" identifier opt-properties ";"

("period" const-expr time-unit | "delay"
const-expr time-unit | "priority"
positive-int-const | "scheduling" "real-time" |

"stack" positive-int-const size-unit) ";"

"port" opt-multiple port-dir type-spec
identifier ";"
Ilinll
"Out n
["multiple"]

"attribute" identifier "(" attribute-parameters
")" opt-properties ";"

service-kind identifier "(" service-parameters
")" opt-properties ";"
"function"

"activity"

["{" properties "}"]
{ property }
component-property
interface-property
task-property
service-property
codel-property
throw-property

("task" identifier |

identifier-list |

"interrupts"
identifier-list |
"validate" codel)

"before"

"after" identifier-list |

n.n
>

opt-async "codel" (codel ";" | fsm-codel ";")
"throws" identifier-list ";"

[{ attribute-parameter "," }
attribute-parameter]

parameter-dir parameter-variable
opt-initializer

[{ service-parameter "," } service-parameter]
parameter-dir type-spec declarator
opt-initializer

[{ codel-parameter "," } codel-parameter]

opt-parameter-src parameter-dir (
parameter-variable

| parameter-variable "::" identifier | "::"
identifier)

["ids" | "local" | "port" | "remote"]

nip"

"out"

"inout"

SECTION 5.17: GRAMMAR REFERENCE

(40)

(41
(42)

(43)
(44)
(45)
(46)
47

(48)

(49)
(50)
(51)
(52)
(53)

(64)

(65)

(56)
(57)
(58)

(69)
(60)
(61)

(62)

parameter-variable

codel

fsm-codel

opt-async
event-list
opt-initializer
initializers

initializer

initializer-value

module
module-name
module-body
const-dcl

const-type

type-dcl

constructed-type

alias-list
struct-type

union-type
enum-type
forward-dcl

declarator

simple-declarator

identifier

parameter-variable "." identifier
parameter-variable "[" positive-int-const "]"
identifier " (" codel-parameters ")"
event-list identifier "(" codel-parameters ")"
"yields" identifier-list

["async"]

"<" identifier-list ">"

["=" initializer]

[{ initializer "," } initializer]
initializer-value

":" string-literals

initializer-value string-literals

const-expr
"{" initializers "}"

"[" positive-int-const "]" "=" const-expr

"[" positive-int-const "]" "=" "{" initializers
Il}ll

"." identifier "=" const-expr

"." identifier "=" "{" initializers "}"

"module" module-name "{" module-body "}" ";"

identifier

[idl-statements]

"const" const-type identifier "=" const-expr
integer-type

char-type

boolean-type

floating-pt-type

octet-type

string-type

named-type

constructed-type
"typedef" alias-list
forward-dcl

struct-type

union-type

enum-type

(type-spec | alias-list ",") declarator
"struct" scope-push-struct "{" member-list "1}"
"union" scope-push-union "switch" " ("
switch-type-spec ")" "{" switch-body "}"
"enum" identifier "{" enumerator-list "}"

("struct" | "union") identifier

simple-declarator
array-declarator

identifier

19

20

(63)

(64)
(65)

(66)

(67)
(68)
(69)

(70)

(71

(72)

(73)

(74)

(75)
(76)
an
(78
(79
(80)
(81)
(82)
(83)
(84)
(85)
(86)
87
(88)

(89)

array-declarator

fixed-array-size

type-spec

simple-type-spec

constructed-type-spec ::

named-type
base-type-spec

template-type-spec

integer-type

floating-pt-type

signed-int

unsigned-int

unsigned-short-int
unsigned-long-int
unsigned-longlong-int
signed-short-int
signed-long-int
signed-longlong-int
float-type
double-type
char-type
boolean-type
octet-type

any-type
string-type

sequence-type

fixed-type

CHAPTER 5: INPUT FILE FORMAT

(simple-declarator | array-declarator)

fixed-array-size

"[" positive-int-const "]"
simple-type-spec
constructed-type-spec
base-type-spec
template-type-spec
named-type
constructed-type
scoped—-name

boolean-type
integer-type
floating-pt-type
char-type

octet-type

any-type
sequence-type
string-type
fixed-type

signed-int
unsigned-int
float-type
double-type
signed-longlong-int
signed-long-int
signed-short-int
unsigned-longlong-int
unsigned-long-int
unsigned-short-int
"unsigned" "short"
"unsigned" "long"
"unsigned" "long" "long"
"short"

"long"

"long" "long"

"float"

"double"

"char"

"boolean"

"octet"

"any"

"string" ["<" positive-int-const
"sequence" "<" simple-type-spec (

positive-int-const ">" | ">")

Il>l|]

n.n
>

"fixed" ["<" positive-int-const ","

positive-int-const ">"]

SECTION 5.17: GRAMMAR REFERENCE

(90) switch-type-spec ::= integer-type
| char-type
| boolean-type
| enum-type
|

named-type
(91) switch-body ::= { case } case
(92) member-list ::= { member ";" } member ";"
(93) member ::= (type-spec | member ",") declarator
(94) case ::= case-label-list type-spec declarator ";"
(95) case-label-list ::= { case-label } case-label
(96) case-label ::= ("case" const-expr | "default") ":"
(97) enumerator-list ::= { enumerator "," } enumerator
(98) enumerator ::= identifier
(99) scope-push-struct ::= identifier
(100) scope-push-union ::= identifier
(101) scoped-name ::= [[scoped-name] "::"] identifier
(102) const-expr 1:= or-expr
(103) positive-int-const ::= const-expr
(104) or-expr ::= { xor-expr "|" } xor-expr
(105) xor-expr ::= { and-expr """ } and-expr
(106) and-expr ::= { shift-expr "&" } shift-expr
(107) shift-expr ::= { add-expr (">>" | "<<") } add-expr
(108) add-expr ::= { mult-expr ("+" | "-") } mult-expr
(109) mult-expr ::= { unary-expr ("x" | "/" | ")") } unary-expr
(110) unary-expr se= [=" | "4 | """] primary-expr
(111) primary-expr ::= literal

| "(" const-expr ")"
| named-type

(112) literal ::= "TRUE"

"FALSE"

|
| integer-literal

| "<float-literal>"
| "<fixed-literal>"
| "<char-literal>"
| string-literals

(113) string-literals ::= { string-literal } string-literal
(114) string-list ::= { string-literals "," } string-literals
(115) time-unit ze= ["s" | "ms" | "us"]
(116) size-unit se= ["k" | "m"]
(117) identifier ::= "[A-Za-z-] [A-Za-z0-9-]*"

| s

| "ms"

["us"

["k"

| "m"

I

"real-time"

22

(118) identifier-list

::= { identifier

CHAPTER 5: INPUT FILE FORMAT

"interface"
"component"
"ids"
"attribute"
"function"
"activity"
"version"

"lang"

"email"
"requires"
"codels-require"
"clock-rate"
"task"

"task"

"period"

"delay"
"priority"
"scheduling"
"stack"

"codel"
"validate"
"yields"
"throws"

"doc"
"interrupts"
"before"

"after"

"handle"

"port"

wip"
"out"
"inout"
"local"
"async"
"remote"
"extends"
"provides"
"uses"
"multiple"

"," } identifier

6
GE€NoM IDL mappings

Ge€NoM IDL is independent of the programming language used to implement the services and internals of
a component. In order to use the G&MoM generated source code, it is necessary for programmers to know
how to access the service parameters and ports from their programming languages. This chapter defines
the mapping of G€"oM IDL constructs to the supported programming languages.

The mapping between GENoM IDL and a programming language diverges from the OMG CORBA
standard. This is unfortunate, because this might lead to some confusion for the developers used to
OMG CORBA, but it was necessary to define mappings well targetting real-time platforms. The design
strategy that guided the definition of those mappings was to try to have contiguous memory segments,
that do not require memory management primitives, for most of the data types. Only unbounded string
and sequences do not follow this scheme.

Ge€NoM currently implements mappings for the C and C++ languages. For the C language, See
Section 6.1 [C mappings], page 23. For the C++ language, see See Section 6.2 [C++ mappings]|, page 27.

6.1 C mappings

6.1.1 Scoped names

The C mappings always use the global name for a type or a constant. The C global name corresponding
to a GeNoM IDL global name is derived by converting occurrences of "::" to "_" (an underscore) and
eliminating the leading underscore.

6.1.2 Mapping for constants
In C, constants defined in dotgen are mapped to a C constant. For instance, the following IDL:

const long longint = 1;
const string str = "string example";

would map into

const uint32_t longint = 1;
const char *str = "string example";

The identifier can be referenced at any point in the user’s code where a literal of that type is legal.

6.1.3 Mapping for basic data types

The basic data types have the mappings shown in the table below. Integer types use the C99 fixed size
integer types as provided by the stdint.h standard header. Users do not have to include this header:
the template mapping generation procedure output the appropriate #include directive along with the
mappings for the integer types.

24 CHAPTER 6: G®"oM IDL MAPPINGS

IDL C
boolean bool
unsigned short uintl6_t
short int16_t
unsigned long uint32_t
long int32_t
unsigned long long uint64_t
long long int64_t
float float
double double
char char
octet uint8_t
any type any not implemented yet

Table: Basic data types mappings in C

6.1.4 Mapping for enumerated types

The C mapping of an IDL enum type is an unsigned, 32 bits wide integer. Each enumerator in an enum

is defined in an anonymous enum with an appropriate unsigned integer value conforming to the ordering
constraints.

For instance, the following IDL:

module m {
enum e {
valuel,
value?2
};
}s

would map, according to the scoped names rules, into

typedef uint32_t m_e;
enum {

1
= O

m_valuel
m_value2

};

6.1.5 Mapping for strings

G&"oM IDL bounded strings are mapped to nul terminated character arrays (i.e., C strings). Unbounded
strings are mapped to a pointer on such a character array.

For instance, the following OMG IDL declarations:

typedef string unbounded;
typedef string<16> bounded;

would map into

typedef char *unbounded;
typedef char bounded[16];

6.1.6 Mapping for arrays
Ge€NoM IDL arrays map directly to C arrays. All array indices run from 0 to size-1.
For instance, the following IDL:
typedef long array([4][16];
would map into

typedef int32_t array([4][16];

SECTION 6.1: C MAPPINGS 25

6.1.7 Mapping for structure types
Ge€NoM IDL structures map directly onto C structs. Note that these structures may potentially include
padding.
For instance, the following IDL:
struct s {
long a;
long b;
};
would map into

typedef struct {
int32_t a;
int32_t b;

} os;

6.1.8 Mapping for union types
Ge€NoM IDL unions map onto C structs. The discriminator in the enum is referred to as _d, the union
itself is referred to as _u.

For instance, the following IDL:

union u switch(long) {
case 1: long a;
case 2: float b;
default: char c;
};
would map into

typedef struct {

int32_t _d;
union {
int32_t a;
float b;
char c;
b o_u;
}ou;

6.1.9 Mapping for sequence types
G&NoM IDL sequences mapping differ slightly for bounded or unbouded variations of the sequence. Both
types maps onto a C struct, with a _maximum, _length and _buffer members.

For unbounded sequences, buffer points to a buffer of at most _maximum elements and containing
_length valid elements. An additional member _release is a function pointer that can be used to
release the storage associated to the _buffer and reallocate it. It is the responsibility of the user to
maintain the consistency between those members.

For bounded sequences, buffer is an array of at most _maximum elements and containing _length
valid elements. Since _buffer is an array, no memory management is necessary for this data type.

For instance, the following IDL:

typedef sequence<long> unbounded;
typedef sequence<long,16> bounded;

would map into

typedef struct {
uint32_t _maximum, _length;

26 CHAPTER 6: G®"oM IDL MAPPINGS

int32_t *_buffer;
void (*release) (void *_buffer);
} unbounded;

typedef struct {
const uint32_t _maximum;
uint32_t _length;
int32_t _buffer[16];

} bounded;

6.1.10 Mapping for port types

Simple ports map onto an object-like C struct with a data(), read() or write() and strerror()
function members. The data() function takes no parameter and returns a pointer on the current port
data. Input ports may refresh their data by invoking the read () method, while output ports may publish
new data by invoking the write () method. Both read () and write () return O on success, or an unsigned
32bits integer representing an error code. The strerror () method can be used to transform the error
code into a user readable error message.

Ports defined with the multiple flag map onto a similar struct, with the difference that data(),
read() and write() methods take an additional string (const char *) parameter representing the port
element name. Multiple output ports have two additional open() and close() members (also accepting
a single string parameter) that dynamically create or destroy ports.

For instance, the following IDL:

port in double in_port;

port multiple in double multi_in_port;
port out double out_port;

port multiple out double multi_out_port;

would map into

typedef struct {

double * (*data)();

uint32_t (*read) (void);

const char * (*strerror) (uint32_t);
} in_port;

typedef struct {
double * (*data) (const char *id);
uint32_t (*read) (const char *id);
const char * (*strerror) (uint32_t);
} multi_in_port;

typedef struct {

double * (*data)();

uint32_t (xwrite) (void);

const char * (*strerror) (uint32_t);
} out_port;

typedef struct {
double * (*data) (const char *id);
uint32_t (*write) (const char *id);
uint32_t (*open) (const char *id);
uint32_t (*close) (const char *id);
const char * (*strerror) (uint32_t);

SECTION 6.2: C++ MAPPINGS 27

} multi_out_port;
6.2 C++ mappings

6.2.1 Scoped names
The C++ mappings for scoped names use C++ scopes. IDL modules are mapped to namespaces. For
instance, the following IDL:
module m {
const string str = "scoped string";
};
would map into
namespace m {
const std::string str = "scoped string";

}

6.2.2 Mapping for constants

G€NoM IDL constants are mapped to a C++ constant. For instance, the following IDL:
const long longint = 1;
const string str = "string example";
would map into
const int32_t longint = 1;
const std::string str = "string example";

6.2.3 Mapping for basic data types

The basic data types have the mappings shown in the table below. Integer types use the C99 fixed size
integer types as provided by the stdint.h standard header (since the C++ cstdint header is not part of
the C++ at the time of writing this document). Users do not have to include this header: the template
mapping generation procedure output the appropriate #include directive along with the mappings for
the integer types.

IDL C++
boolean bool
unsigned short uintl6_t
short int16_t
unsigned long uint32_t
long int32_t
unsigned long long uint64_t
long long int64_t
float float
double double
char char
octet uint8_t
any type any not implemented yet

Table: Basic data types mappings in C++

6.2.4 Mapping for enumerated types
The C++ mapping of an IDL enum type is the corresponding C++ enum. An additional constant is
generated to guarantee that the type occupies a 32 bits wide integer.

For instance, the following IDL:

enum e {
valuel,

28 CHAPTER 6: G®"oM IDL MAPPINGS

value?2
+
would map, according to the scoped names rules, into

enum e {

valuel,

value?2,

_unused = Oxffffffff,
};

6.2.5 Mapping for strings

GeNoM IDL bounded strings are mapped to nul terminated character arrays (i.e., C strings) wrapped in-
side the specific genom: :bounded_string class. Unbounded strings are mapped to std: : string provided
by the C++ standard.

For instance, the following OMG IDL declarations:

typedef string unbounded;
typedef string<16> bounded;

would map into

typedef std::string unbounded;
typedef genom::bounded_string<16> bounded;

The genom: :bounded_string provides the following interface:

namespace genom3 {
template<std::size_t L> struct bounded_string {
char c[L];
s
¥

This minimalistic definition will be refined before the official 3.0 G€NoM release.

6.2.6 Mapping for arrays
GeNoM IDL arrays map directly to C++ arrays. All array indices run from 0 to size-1.
For instance, the following IDL:
typedef long arrayl[4][16];
would map into

typedef int32_t array[4][16];

6.2.7 Mapping for structure types

Ge"oM IDL structures map directly onto C++ structs. Note that these structures may potentially include
padding.
For instance, the following IDL:
struct s {
long a;
long b;
};
would map into

struct s {
int32_t a;
int32_t b;
};

SECTION 6.2: C++ MAPPINGS 29

6.2.8 Mapping for union types
G€NoM IDL unions map onto C structs. The discriminator in the enum is referred to as _d, the union
itself is referred to as _u.

For instance, the following IDL:

union u switch(long) {
case 1: long a;
case 2: float b;
default: char c;
}
would map into

struct u {

int32_t _d;

union {
int32_t a;
float b;
char c;

} o_u;

};

Note that the C++ standard does not allow union members that have a non-trivial constructor. Con-
sequently, the C++ mapping for such kind of unions is not allowed in G&NoM either. This concerns
sequences and strings, and structures or unions that contain such a type. You should thus avoid to
define such datatypes in G€MoM IDL in order to maximize the portability of your definitions.

6.2.9 Mapping for sequence types

GeNoM IDL sequences mapping differ for bounded or unbouded variations of the sequence. The unbounded
sequence maps onto a C++ std: :vector provided by the C++ standard. The bounded sequences maps
onto the specific genom3: :bounded_vector class.
For instance, the following IDL:
typedef sequence<long> unbounded;
typedef sequence<long,16> bounded;
would map into
typedef std::vector<int32_t> unbounded;
typedef genom3d::bounded_vector<int32_t, 16> bounded;

The genom: :bounded_vector provides the following interface:

namespace genom3 {
template<typename T, std::size_t L> struct bounded_vector {
T e[L];
s
3

This minimalistic definition will be refined before the official 3.0 G€NoM release.

7

Running genom

G€NoM is invoked by using one of the three following command lines:
genom3 [-1] [-h] [--version]
genom3 [-I dir] [-D macro[=value]] [-El-n] [-v] [-d] file.gen
genom3 [general options] template [template options] file.gen

The following sections give an overview of the general behaviour (see Section 7.1 [Description], page 31)
and detail the options affecting the GE"oM program itself (see Section 7.2 [General options], page 31) as
well as options that can be passed to templates (see Section 7.3 [Template options], page 33). A list of
recognized environment variables is also given (see Section 7.4 [Environment variables], page 33).

7.1 Description

genom3 generates the source code of the software components described in the formal description file.gen
input file.

The input file.gen is expected to contain the description of the services, input and output ports, data
types definitions and execution contexts of a software component, written in the dotgen language.

The dotgen specification is first processed by a C preprocessor before it is parsed by genom3 and
transformed into an abstract syntax tree. The program used as a C preprocessor can be changed with
the CPP environment variable. genom3 accepts -I and -D options that are passed inchanged to the cpp
program.

The abstract syntax tree is exported in a format suitable to a generator engine that is in charge of a
template execution for actual source code generation. The generator engine provides a scripting language
and a set of procedures for use by templates. The directory where source code for the generator engine
is searched can be changed with the -s option.

Templates are a set of source files that serve as the basis for source code generation. Templates
source files are interpreted by the generator engine. They can contain code written in the scripting
language provided by the generator engine, that computes generated output, or regular source code that
is appended directly to the generated code. Intermediate files and scripts are saved in a temporary
directory before they are copied to the final destination directory. The -T option changes the path of
the temporary directory. The -d option will keep all temporary files instead of deleting them once the
program terminates. This is useful only for template development and debugging.

The choice of a template depends on the kind of source code that is wanted by the user. Refer to the
documentation of the templates for a description on what they do. The names of the available templates
can be listed with the -1 option. The directory in which templates are looked for can be changed with
the -t option.

The genom3 program accepts general options that affect the general program behaviour. genom3 can

also pass template options to the template. These options will only affect the template behaviour.

7.2 General options

-Idir Add the directory dir to the list of directories to be searched for included files. The dir
argument is passed as-is to the cpp program via the same -I option.
When -r option is in effect (either explicitely passed on the command line, or configured by
default during the build process), an implicit -I directive pointing to the directory of the
input file is appended to the end of the list of searched directories.

32 CHAPTER 7: RUNNING GENOM

-D macro[=value]
Predefine macro, with definition 1 or value if given, in the same way as a #define directive
would do it. This option is passed as-is to the cpp program.

If you are invoking genom from the shell, you may have to use the shell quoting character
to protect shell’s special characters such as spaces.

An implicit macro __GENOM__ is always defined and contains the version of the genom
program. This can be used to divert some lines in source files meant to be included by other
tools that genom, and that contain syntax that genom does not understand.

-E Stop after the preprocessing stage, and do not run genom proper. The output of cpp is sent
to the standard output. genom exits with a non-zero status if there are any preprocessing
errors, such as a non-existent included file.

-n
--parse-only
Stop after the input file parsing stage, and do not invoke any template. This is useful to
check the syntax of the input file. Any errors or warning are reported and genom exits with
a non-zero status if there are errors.

—--dump Stop after the input file parsing stage, do not invoke any template and dump the parsed
specification in dotgen format. This is mostly useful for debugging genom itself or to view
the actual specification built by genom from a complex (set of) file(s). Any errors or warning
are reported and genom exits with a non-zero status if there are errors.

--list Print to the standard output the list of available templates. Each line of output contains the
name of a template and the genom engine that is uses (currently, only Tcl-based templates
are supported).

By default, the standard templates directory is searched, but any -t option will be taken
into account.

-t path

--tmpldir=path
Use path as the directory containing templates. This can be a colon separated list of
directories which are search in order.

This option is useful only for templates not installed in the genom standard directories, i.e.
share/genom/<version>/templates or share/genom/site-templates.

path is searched for files matching dir/*/template.tcl, where * is the actual template
name.

-s dir
--sysdir=dir
Use dir as the directory holding genom engine files. This option is useful if non-standard

engines are to be used. The default value is share/genom/<version>/engines.

dir should contain directories named after the engine name.

-T dir

-—tmpdir=dir
Use dir as the temporary directory holding intermediate files. See also the environment
variable TMPDIR.

-r

--rename Some cpp programs cannot handle correctly files with a .gen extension. This option will
make genom call cpp with an input file ending in .c, linked to the real input file.

SECTION 7.4: ENVIRONMENT VARIABLES 33

-v

--verbose Force genom to be more verbose while processing input files.

-d

--debug Activate some debugging options. In particular, temporary files are not deleted. Useful for
debugging genom itself or generator engines.

--version Display the version number of the invoked GenoM.

-h
--help Print usage summary and exit.

7.3 Template options

-h

--help Templates might define their own specific options. The -h option is always defined, and
prints a summary of supported options. See the template manual for a detailed description.
Template options should be passed after the template name, and before the input file name.

7.4 Environment variables

CPP Define the C preprocessor program to use. The default is libexec/genom-pcpp. The CPP
program must recognize -I and -D arguments.

PKG_CONFIG
Define the path to the pkg-config(1) program.pkg-config(1) may be spawned by genom-
pepp for handling the #pragma require directive. The default is to search in the PATH
variable.

GENOM_TMPL_PATH
The value of GENOM_TEMPLATE_PATH is a colon-separated list of directories, much like PATH,
where GE€MoM looks for templates. Setting this variable overrides the default search path,
but any -t option takes precedence over this variable.

TMPDIR Path to the directory holding temporary files. Defaults to /tmp.

8

Templates

Templates ...

8.1 The TCL backend

8.1.1 Runtime template information

Source additional template code

template require file [TCL Backend]

Source tcl file and make its content available to the template files. The file name can be absolute or
relative. If it is relative, it is interpreted as relative to the template directory (pxref{dotgen template
dir}).

Parameters:

file Tcl input file to source. Any procedure that it creates is made available to
the template files.

Generate template content

template parse [args list| [perm mode] [file|string|raw file .. .] [TCL Backend]

This is the main template function that parses a template source file and instanciate it, writing the
result into the current template directory (or in a global variable). This procedure should be invoked
for each source file that form a G&€NoM template.

When invoking template parse, the last two arguments are the destination file or string. A destina-
tion file is specified as file file (the filename is relative to the current template output directory).
Alternatively, a destination string is specified as string var, where var is the name of a global variable
in which the template engine will store the result of the source instantiation.

The output destination file or string is generated by the template from one or several input source.
An input source is typically a source file, but it can also be a string or raw (unprocessed) text. An
input source file is specified with file file, where file is a file name relative to the template directory.
An input source read from a string is specified as string text, where text is the text processed by
the template engine. Finally, a raw, unprocessed source that is copied verbatim to the destination is
specified as raw text, where text is the text to be output.

Additionnaly, each input source, defined as above, can be passed a list of optional arguments by using
the special args 1ist construction as the first argument of the template parse command. The list
given after args can be retrieved from within the processed template source files from the usual argv
variable.

Parameters:

args list This optional argument should be followed by a list of arguments to pass
to the template source file. It should be the very first argument, otherwise
it is ignored. Each element of the list is available from the template source
file in the argv array.

36 CHAPTER 8: TEMPLATES

perm mode This optional argument may be set to specify the permissions to be set for
the created file.

Examples:
template parse file mysrc file mydst

Will parse the input file mysrc, process it and save the result in mydst.
template parse args {one two} file mysrc file mydst

Will do the same as above, but the template code in the input file mysrc will have the list {one two}
accessible via the argv variable.

template parse string "test" file mydst

WiIll process the string "test" and save the result in mydst.

Create symbolic links

template link src dst [TCL Backend]

Link source file src to destination file dst. If relative, the source file src is interpreted as relative to
the template directory and dst is interpreted as relative to the current output directory. Absolute file
name can be given to override this behaviour.

Define template options

template options { pattern body ... } [TCL Backend]

Define the list of supported options for the template. Argument is a Tcl switch-like script that must
define all supported options. It consists of pairs of pattern body. If an option matching the pattern
is passed to the template, the body script is evaluated. A special body specified as "-" means that
the body for the next pattern will be used for this pattern.

Examples:

template options {
-h - --help { puts "help option" }
}

This will make the template print the text "help option" whenever -h or ~help option is passed to the
template.

Template dependencies

template deps [TCL Backend]

Return the comprehensive list of template files processed so far. This includes files processed via
template require, template parse and template link. This list is typically used to generate de-
pendency information in a Makefile.

Retrieve options passed to templates

template ar TCL Backend
g

Return the next argument passed to the template, or raise an error is no argument remains.

37

Define template help string

template usage [string] [TCL Backend]

With a string argument, this procedure defines the template "usage" message. Unless the template
redefines a -h option with template options (see [template options], page 36), the default behaviour
of the template is to print the content of the template usage string when -h or --help option is
passed to the template.

template usage, when invoked without argument, returns the last usage message defined.

Print runtime information

template message [string] [TCL Backend]

Print string so that it is visible to the end-user. The text is sent on the standard error channel
unconditionnaly.

Abort template processing

template fatal [string] [TCL Backend]

Print an error message and stop. In verbose mode, print the source location as reported by the TCL
command [info frame].

8.1.2 Backend configuration

Engine output configuration

engine mode [[+-]modespec]... [TCL Backend]

Configures various engine operating modes. engine mode can be invoked without argument to retrieve
the current settings for all supported modes. The command can also be invoked with one or more
mode specification to set these modes (see modespec argument below).

Parameters:

modespec A mode specification string. If mode string is prefixed with a dash (=), it is
turned off. If mode is prefixed with a plus (+) or not prefixed, it is turned
on. Supported modespec are:

overwrite when turned on, newly generated files will overwrite existing
files without warning. When turned off, the engine will stop
with an error if a newly generated file would overwrite an
existing file. overwrite is by default off.

move-if-change
when turned on, an existing file with the same content as a
newly generated file will not be modified (preserving the last
modification timestamp). When off, files are systematically
updated. move-if-change is on by default.

merge-if-change
when turned on, existing destination files will be merged with
new content by the engine, instead of being overwritten (see
[engine merge-tool], page 38). merge-if-change is off by de-
fault.

38 CHAPTER 8: TEMPLATES

debug when on, this mode preserves temporary files and tcl pro-
grams generated in the temporary directory. Useful only for
debugging the template.
Returns:

When called without arguments, the command returs the current configuration of all
engine modes.

Example:

engine mode -overwrite +move-if-change

Automatic merge of generated content

engine merge-tool tool [TCL Backend]

Changes the engine merge tool. When the engine is in 'merge-if-change’ mode (see see [engine mode],
page 37), a merge tool is inkoked with the two conflicting versions of the destination file. If the merge
tools exits successfuly, the generated file is replaced by the merged version.

There are two builtin tools: interactive and auto. interactive interactively prompts the user for
each patch to be applied to merge the final destination. The user can accept or reject the patch, or
leave the destination file unchanged. The auto builtin tool automatically merges the two files and
places conflict markers (<<<<<<< and >>>>>>>) were appropriate in the destination file.

Parameters:

tool The path to the merge tool executable (e.g. meld), or one of the builtin
keywords interactive or auto.

Change output directory

engine chdir dir [TCL Backend]

Change the engine output directory. By default, files are generated in the current directory. This
command can be used to generate output in any other directory.

Parameters:

dir The new output directory, absolute or relative to the current working di-
rectory.

Get current output directory

engine pwd [TCL Backend]

Returns:

The current engine output directory.
8.1.3 Input file information

Genom program path and command line

Those commands implement access to genom program parameters or general information.

dotgen genom program [TCL Backend]

Return the absolute path to the GenoM executable currently running.

SECTION 8.1: THE TCL BACKEND 39

dotgen genom cmdline [TCL Backend]

Returns a string containing the options passed to the G€"oM program.

dotgen genom version [TCL Backend]

Returns the full version string of the G€NoM program.

dotgen genom templates [TCL Backend]

Return the list of all currently available templates name.

dotgen genom debug [TCL Backend]

Returns a boolean indicating whether genom was invoked in debugging mode or not.

dotgen genom verbose] [TCL Backend]

Returns a boolean indicating whether genom was invoked in verbose mode or not.

Template path and directories

Those commands return information about the template currently being parsed.

dotgen template name [TCL Backend]

Return the current template name.

dotgen template dir [TCL Backend]

Return a path to the template source directory (the directory holding the template.tcl file).

dotgen template builtindir [TCL Backend]

Return a path to the genom builtin templates source directory.

dotgen template tmpdir [TCL Backend]

Return a path to the temporary directory where the template engine writes its temporary files.

Input file name and path

Those commands return information about the current genom input file (.gen file).

dotgen input notice [TCL Backend]

Return the copyright notice (as text) found in the .gen file. This notice can actually be any text and
is the content of the special comment starting with the three caracters / * /, near the beginning of
the .gen file.

dotgen input deps [TCL Backend]

Return the comprehensive list of input files processed so far. This includes the input .gen file itself,
plus any other file required, directly or indirectly, via a #include directive. This list is typically used
to generate dependency information in a Makefile.

40 CHAPTER 8: TEMPLATES

Process additional input

dotgen parse file|string data [TCL Backend]

Parse additional .gen data either from a file or from a string. When parsing is successful, the

corresponding objects are exported to the backend.
Parameters:
file|string Specify if parsing from a file or from a string.
data When parsing from a file, data is the file name. When parsing from a string,

data is the string to be parsed.

Data type definitions from the specification

dotgen types [pattern] [TCL Backend]

This command returns the list of type objects that are defined in the current .gen file. This list may
be filtered with the optional pattern argument. Each element of the returned list is a type command
that can be used to access detailed information about that particular type object.

Parameters:
pattern Filter the type names with pattern. The filter may contain a glob-like
pattern (with * or ? wildcards). Only the types whose name match the
pattern will be returned.
Returns:

A list of type objects of class type.

Components definitions from the specification

dotgen components [pattern] [TCL Backend]

This command returns the list of components that are defined in the current .gen file. This list may
be filtered with the optional pattern argument. Each element of the returned list is a component
command that can be used to access detailed information about each particular component object.

Parameters:
pattern Filter the component name. The filter may contain a glob-like pattern (with
* or 7 wildcards). Only the components whose name match the pattern
will be returned.
Returns:

A list of component objects of class component.

8.1.4 Language dependent code generation

Target programming language

lang language [TCL Backend]

Set the current language for procedures that output a language dependent string

Parameters:

language The language name. Must be one of ¢ or c++.

SECTION 8.1: THE TCL BACKEND 41

Cannonical object name

cname string|object [TCL Backend]

Return the cannonical name of the string or the G€NoM object, according to the current language.

If a regular string is given, this procedure typically maps IDL :: scope separator into the native scope
separator symbol for the current language. If a codel object is given, this procedure returns the symbol
name of the codel for the current language.

Parameters:
string The name to convert.
object A GE&"oM object. Only class codel is supported at the moment.

Generate comment strings

comment [-c| text [TCL Backend]

Return a string that is a valid comment in the current language.

Parameters:
c The string to use as a comment character (overriding current language).
test The string to be commented.

Cannonical file extension

fileext [-kind] [TCL Backend]

Return the cannonical file extension for the current language.

Parameters:

kind Must be one of the strings source or header.

Generate indented text

indent [#nl|++|-] [text ...] [TCL Backend]

Output text, indented to the current indent level. Each text argument is followed by a newline. Indent
level can be changed by passing an absolute level with #n, or incremented or decremented with ++ or

Parameters:

test The string to output indented.

Generate filler string

-—= [-column] text ... filler [TCL Backend]

This command, spelled with 3 dashes (-), return a string of length column (70 by default), starting
with text and filled with the last character of the filler string.

Parameters:
text The text to fill.
filler The filler character.

column The desired length of the returned string.

42 CHAPTER 8: TEMPLATES

Chop blocks of text

wrap [-column| text [prefix] [sep] [TCL Backend]

Chop a string into lines of length column (70 by default), prefixed with prefix (empty by default).
The string is split at spaces by default, or at sep if given.

Parameters:
text The text to fill.
prefix A string prefixed to each line.
sep The separator for breaking text.
column The desired maximum length of each line

IDL type language mapping

language mapping [type] [TCL Backend]

Generate and return a string containing the mapping of type for the current language, or of all types
if no argument is given. The returned string is a valid source code for the language.

Parameters:

type A ’type’ object.

Code for type declarations

language declarator type [var] [TCL Backend]

Return the abstract declarator for type or for a variable var of that type, in the current language.

Parameters:
type A ’type’ object.
var A string representing the name of a variable of type type.

Code for variable addresses

language address type [var] [TCL Backend]

Return an expression evaluating to the address of a variable in the current language.

Parameters:
type A ’type’ object.
var A string representing the name of a variable of type type.

Code for dereferencing variables

language dereference type [var] [TCL Backend]

Return an expression dereferencing the address of a variable in the current language.

Parameters:
type A ’type’ object.

var A string representing the name of a variable of type type.

SECTION 8.1: THE TCL BACKEND 43

Code for declaring functions arguments

language argument type kind [var] [TCL Backend]

Return an expression that declares a parameter var of type type, passed by value or reference according
to kind.

Parameters:
type A ’type’ object.
kind Must be value or reference.
var A string representing the name of a variable of type type.

Code for passing functions arguments

language pass type kind [var] [TCL Backend]

Return an expression that passes var of type type as a parameter, by value or reference according to
kind.

Parameters:
type A ’type’ object.
kind Must be value or reference.
var A string representing the name of a variable of type type.

Code for accessing structure members

language member type mlist [TCL Backend]

Return the language construction to access a member of a type. mlist is a list interpreted as follow:
if it starts with a letter, type should be an aggregate type (like struct); if it starts with a numeric
digit, type should be an array type (like sequence).

Parameters:
type A ’type’ object.
mlist A list of hierachical members to access.

Code for declaring codel signatures

language signature codel [separator]| [location] [TCL Backend]

Return the signature of a codel in the current language. If separator is given, it is a string that is
inserted between the return type of the codel and the codel name (for instance, a \n in C so that the
symbol name is guaranteed to be on the first column).

Parameters:
code A ’codel’ object.
separator A string, inserted between the return type and the codel symbol name.

location A boolean indicating whether to generate #line directives corresponding
to the codel location in .gen file.

44 CHAPTER 8: TEMPLATES

Code for calling codels

language invoke codel params [TCL Backend]

Return a string corresponding to the invocation of a codel in the current language.

Parameters:
code A ’codel’ object.
params The list of parameters passed to the codel. Each element of this list must

be a valid string in the current language corresponding to each parameter
value or reference to be passed to the codel (see [language pass], page 43).

Index of concepts

#

HPTAGMA . . e 10
#pragma requires......... ... 10
A

attribute, declaration....................... 13
C

codel, declaration 14
component, declaration........................... 10
Constant, declaration 15
D

declaration, attribute........................ 13
declaration, codel 14
declaration, component............. 10
declaration, ids...........cooiiiii i 12
declaration, interface.............. 12
declaration, port.......... ... i il 13
declaration, service............cooiiiiiiiii.. 13
declaration, task 12
dependency ... 10
dotgen..... 9
dotgen, GramImNaruuuuruurenennnnnnnnn. 17
Dotgen, identifierl 16
dotgen, preprocessingoooiiiiiiiiiiinn. 9
dotgen, specification oo 10

G

GENOM3, grammarovtiiiiiiieenna.. 17
GENoM3, specificationoovvviiina.... 10
GLAIMIMAT « ¢ ottt vttt ettt ettt e, 17

Indices

|

identifier........ ... 16
ids, declaration...............o oo il 12
Input, file format.............o oL 9
input, grammaro i 17
input, preprocessing.............. ool 9
interface, declaration............................. 12
M

module, declaration o 15
P

package, dependencyeiiiiiiiiiian. 10
parameters, Service. 14
pkg-config........ ... 10
PKG_CONFIGttt it 10
port, declaration L 13
PrePrOCESSING . oo oottt et e e 9
R

TeqUITE. ... 10

S

service, declaration............... 13
Service, parameters. i 14
specification i i 10
T

task, declaration 12
Type, declaration L. 15
Type, specification 15

46

Index of TCL backend procedures

dotgen genom verbose

dotgen genom verbose] 39

CIAME . . . vttt ittt ittt 41
COMMENT . ..ottt e 41
D

dotgen componentsoiiiiiiiiii., 40
dotgen genom.................iiiiiiiiiiii 38
dotgen genom cmdline 39
dotgen genom debug............. ...l 39
dotgen genom Programc.evuvuunnnnnn 38
dotgen genom templates......................... 39
dotgen genom Versionc.uiiiiiiia.. 39
dotgen inputl 39
dotgen input deps.................. ...l 39
dotgen input notice.......... 39
dOtEEN PATSEe ..ttt 40
dotgen template................................ 39
dotgen template builtindir 39
dotgen template dir............................. 39
dotgen templatenamel 39
dotgen template tmpdir......................... 39
dotgen types i 40
E

engine chdirl 38
engine merge-tooll 38

enginemode i 37

INDICES

enginepwd ...l 38
F

fileext. ... o 41
|

indent....... 41
L

lang .. 40
language address........ooviiiiiiiiiiiiiiia... 42
language argument 43
language declaratorooiiuiin... 42
language dereference........................... 42
language invoke................oiiiiiiii.. 44
language MappPing.........oouuvieiiinnnennnnnn... 42
language member...........ouuuuuiiinnan. 43
language PasSttt 43
language signature 43
T

template arg............. i 36
templatedeps........... ... i, 36
template fatal...................ia, 37
template link.......... ... il 36
templatemessage.............. .. i, 37
template options.......... ..o 36
template parse..................iiiiiii. 35
template require........... ... i il 35
template USAZeovvuurrieiiiieeiiien 37
w

5 o= N 42

	Introduction
	Component model
	GenoM overview
	A minimal example
	Input file format
	Preprocessing
	#line directives
	#pragma requires directives
	#pragma provides directives

	Elements of a GenoM3 specification
	Component declaration
	Interface declaration
	IDS declaration
	Task declaration
	Port declaration
	Attribute declaration
	Service declaration
	Service parameters
	Codel declaration
	Module declaration
	Constant declaration
	Type declaration
	Type specification
	Identifiers and reserved keywords
	Grammar reference

	GenoM IDL mappings
	C mappings
	Scoped names
	Mapping for constants
	Mapping for basic data types
	Mapping for enumerated types
	Mapping for strings
	Mapping for arrays
	Mapping for structure types
	Mapping for union types
	Mapping for sequence types
	Mapping for port types

	C++ mappings
	Scoped names
	Mapping for constants
	Mapping for basic data types
	Mapping for enumerated types
	Mapping for strings
	Mapping for arrays
	Mapping for structure types
	Mapping for union types
	Mapping for sequence types

	Running genom
	Description
	General options
	Template options
	Environment variables

	Templates
	The TCL backend
	Runtime template information
	Source additional template code
	Generate template content
	Create symbolic links
	Define template options
	Template dependencies
	Retrieve options passed to templates
	Define template help string
	Print runtime information
	Abort template processing

	Backend configuration
	Engine output configuration
	Automatic merge of generated content
	Change output directory
	Get current output directory

	Input file information
	Genom program path and command line
	Template path and directories
	Input file name and path
	Process additional input
	Data type definitions from the specification
	Components definitions from the specification

	Language dependent code generation
	Target programming language
	Cannonical object name
	Generate comment strings
	Cannonical file extension
	Generate indented text
	Generate filler string
	Chop blocks of text
	IDL type language mapping
	Code for type declarations
	Code for variable addresses
	Code for dereferencing variables
	Code for declaring functions arguments
	Code for passing functions arguments
	Code for accessing structure members
	Code for declaring codel signatures
	Code for calling codels

	Indices
	Index of concepts
	Index of TCL backend procedures

