
GDHE - Graphic Display for Hilare Experiments

version 3.1

Matthieu Herrb
CNRS-LAAS

January 2003

Contents

1 Overview 4
1.1 Starting GDHE . 4
1.2 The GDHE Tcl package . 4
1.3 Init file . 5
1.4 Using the reader . 5

2 The standard GDHE application 6
2.1 Description of a standard environment . 6

2.1.1 The user interface . 6
2.1.2 Describing the scene . 7

2.2 Other Tcl procedures . 8
2.2.1 object . 8
2.2.2 redrawAllWindows . 9

2.3 Pre-defined models . 9
2.3.1 Mobile robots . 10

3 Basic objects 11
3.1 box . 11
3.2 cylinder . 11
3.3 polygon . 11
3.4 polyline . 12
3.5 prism . 12
3.6 sphere . 12
3.7 disk . 12
3.8 picture . 12
3.9 drawString . 13
3.10 repere . 13

4 The GDHE protocol 14
4.1 Requests . 14
4.2 Client library . 14

4.2.1 Initialization . 15
4.2.2 Termination . 15
4.2.3 Evaluating a Tcl expression . 15

1

5 The Tcl-OpenGL interface 16
5.1 Introduction . 16
5.2 The display framework . 16
5.3 OpenGL primitives . 17

5.3.1 Handling of 3D display windows . 17
5.3.2 Frames . 19
5.3.3 Color . 20
5.3.4 Other random procedures . 20
5.3.5 Display lists . 21

5.4 Tcl procedures and variables . 22
5.4.1 Procedures called by Tcl . 22
5.4.2 Variables used by GDHE . 23

6 Extension modules 24
6.1 Numerical Terrain Models . 24

6.1.1 readTerrain . 24
6.1.2 readTerrainGeroms . 24
6.1.3 terrain . 24
6.1.4 deleteTerrain . 25
6.1.5 Terrains types . 25

6.2 Planet . 25
6.2.1 initPlanet . 25
6.2.2 drawPlanet . 25
6.2.3 planet . 26
6.2.4 Bugs . 26

6.3 Segkit . 26
6.3.1 segkitMap . 26

6.4 Mpeg . 26

2

Copyright (C) 1996-2003 LAAS/CNRS
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3

Chapter 1

Overview

This document introduces a new release of the GDHE software for 3D visualization of robotics
applications [1].

This version is totally programmable by using of the Tcl/Tk [3, 4] scripting language. It
uses the OpenGL [2] library to display the 3D primitives.

GDHE allows to build a 3D representation of the geometrical model of an environment
and make it change with time. In order to achieve this, GDHE acts as a server that receives
requests from a set of client processes. These requests describe the evolution of the model.
Clients can be either modules that control a real system and that send data about the state
of this system or simulation processes producing a simulated state of a virtual system.

GDHE accepts an unlimited number of clients, allowing to visualize simultaneously the
state of multiple independent systems (for instance a multi-robots system).

Finally GDHE is able to record all the requests it receives from its clients to play them
back later, without needing the clients.

1.1 Starting GDHE

To start GDHE, the Unix environment variable GDHE must be defined and hold the path to
the base directory of GDHE files. In the LAAS standard environment this is:
/usr/local/robots/share/gdhe.� �

gdhe [-l log-file]
 	
The -l option specifies the pathname of the log file in which all display requests are stored.

The reader application then reads this log file back and sends them back for play back to
GDHE.

Warning! GDHE overwrites the log file at each startup. In order to play back a log file,
care should be taken to not overwrite it by using a different log file, or no log file at all.

1.2 The GDHE Tcl package

GDHE is also available as a Tcl/Tk extension, that can be loaded in the wish (or rwish)
interpreter, using the Tcl load command:

4

� �
load exec pprefix/lib/gdhe.so
 	

1.3 Init file

During startup GDHE reads the .gdherc file in the current directory, after loading the stan-
dard GDHE library (see chapter 2) and after creating the socket of the display server.

The .gdherc file can thus redefine some elements of the standard GDHE library.
To learn how to define an initial environment in the .gdherc file, please report to chapter 2.

1.4 Using the reader

The reader is a Unix application that can read log files created by GDHE (using the -l
option) and play them back inside GDHE.� �

reader [-c][-f file][-h host]
[-n packets][-d millis][-p command][-l]
[s factor]
 	

-c compat mode: reads the old format log files.
-f file reads the specified file.
-h host connects to GDHE on specified host.
-n packets reads the log file packets commands at a time.
-d millis makes a pause of millis milliseconds between each

command.
-p command stops each time the specified command is found in

the log file.
-l lists the keywords recognized as command by the -p

option.
-s factor speeds the play back by the integer factor.

5

Chapter 2

The standard GDHE application

GDHE includes a set of procedures developed at CNRS/LAAS for the visualization of exper-
iments in the Robotics and Artificial Intelligence group.

2.1 Description of a standard environment

GDHE is highly programmable (see next chapters). However it is pre-configured with a set
of functions that are well suited to represent the kind of environment in which the mobile
robots of the LAAS. This default (or standard) configuration is described in this chapter.

2.1.1 The user interface

The default GDHE user interface is made of 2 main windows: a window showing the scene
and a control window. The position of the observer can be modified by dragging with the left
mouse button in the scene window.

The control panel offers the following settings:

Distance: the distance between the observer and the watched point in the scene.

elevation: the angle that the line of sight makes with the horizontal plane.

azimut: the direction of the line of sight measured around the vertical.

target X: x coordinate of the point watched by the observer.

target Y: y coordinate of the point watched by the observer.

target Z: z coordinate of the point watched by the observer.

Lights: controls the computation of the lighting of the scene.

Fill/Line: selects rendering with filled facets or lines.

Perspective/orthogonal: computes the rendering of the scene using a perspective, resp.
orthogonal projection.

Dump EPS: generates a dump in Encapsulated PostScript format of the visualization win-
dow.

Quit: quits the GDHE application.

6

2.1.2 Describing the scene

In the standard GDHE application, the scenes are split in two parts: a fixed environment and
mobile objects. These two parts are described in Tcl variables. In order to make changes to
a scene, the values of these variables can be modified.

Mobile objects

To represent mobile objects, GDHE is using several parallel Tcl arrays, indexed by object
names, which can be arbitrary strings:

pos a Tcl array containing the position of each object. if pos has 3 elements,
they are xyθ, the position in the z = 0 plane of the object. If pos has six
elements, they represent the Bryant angles and the xyz position of the object
in the 3D space.

robots a Tcl array containing for each object the Tcl code to draw the object.
For readability purposes, this code usually consists of a single procedure
invocation, including arguments. The name of this array suggests that mobile
objects are robots, but it can be anything.

platform a Tcl array associating to each object some Tcl code to draw some instru-
ments attached to the object. This array is particularly useful when drawing
robots that can carry different type of instruments. platform does not need
to be defined for each object.

walls a Tcl array associating to each object a list of 2D segments in the local
frame of the object. These segments (which typically correspond to obstacles
perceived by a mobile robot) are drawn as walls (vertical rectangular facets)
by GDHE.

rs trajectory a Tcl array describing a Reed and Shepp style (a succession of arcs and
straight line segments) in the local frame of the object, drawn in the hori-
zontal plane of the scene.

The associative arrays of Tcl are used intensively here. An Object has a name, which is
a string, and this name is used as an index in the various arrays described above to find out
the various attributes of the object.

Example:
The xr4000 procedure draws a Nomadic XR4000 mobile robot. To place such a robot in

the environment at coordinates x = 2m, y = 1m and θ = 0, just choose a name for it (for
instance r1 and evaluate the following Tcl code:

set robots(r1) xr4000
set pos(r1) {2.0 1.0 0.0}

The, to make this robot move, one just have to modify the value of pos(r1):

set pos(r1) {2.2 1.0 0.0}

This will redraw the XR4000 robot 20cm further down the Ox axis.

7

Table 2.1: Structure of the environment model

Cells The environment in Martha is composed of cells, represented by the cell vertices
and cell boundaries lists.

Stations Parking areas for the robots are called stations. These are stored in the sta-
tion vertices and station boundaries lists.

Obstacles Static obstacles in the environment are described by the obstacle vertices and
obstacle boundaries lists.

The environment

The standard GDHE application was designed to make use of environment models described
in a format compatible with the format used by the European project MARTHA.

These environment models are represented by another set of Tcl variables. The initializa-
tion of these variables is generally done in a separate file, sourced during GDHE startup by
.gdherc.

The various components of the environment are polygons, which are described using the
formalism used for the MARTHA project. This formalism uses two arrays, one to hold the xy
coordinates of the vertices of the polygons and another one to hold a list of vertices indexes
that build a polygon. The first array is called foo vertices and the second one is foo boundaries
for a given element foo.

2.2 Other Tcl procedures

The standard GDHE application provides a certain number of pre-defined objects (the LAAS
robots and some accessories), but also some primitives that help to build new objects or to
handle display windows.

2.2.1 object� �
object name { definition }
 	
This function automates the definition, compilation and display of OpenGL display lists.

During the first call to object an OpenGL display list is created and associated with name
while definition is interpreted and displayed.

Further calls to the same object procedure only draws the recorded OpenGL display list,
discarding the definition.

Remarks:

• the definition part of an object should not contain a variable part. All variables will
keep the value they had when the argument is first evaluated, no matter how the Tcl
quoting is done.

• there are some limits in the current implementation on the redefinitions of an existing
object.

8

Example:
The following code defines the desk procedure that draws a table. This procedure uses

object to create an OpenGL display list called Desk.

proc desk {} {

object Desk {
pushMatrix
translate 0.6 0.4 0
color 200 200 100
Upper plane
box 0 0 0.8 1.20 0.8 0.02
sides
box -0.6 0 0 0.02 0.8 0.8
box 0.6 0 0 0.02 0.8 0.8
bottom
box 0 0.4 0.4 1.20 0.02 0.4
popMatrix

}
}

This procedure can be later referenced in the robots array to place two desks in the
environment:

set robots(desk1) desk
set pos(desk1) { 0 0 -90 }
set robots(desk2) desk
set pos(desk2) { 0 1.5 -90 }

2.2.2 redrawAllWindows� �
redrawAllWindows
 	
Triggers an immediate redisplay of all OpenGL windows displayed. This command is only

useful l in a Tcl script to create an animation. When clients are sending requests to GDHE,
redisplay is managed automatically when the global variable auto redisplay is set to 1 (which
is its default value).

2.3 Pre-defined models

This section describes the pre-defined objects in GDHE. These objects are all defined in the
Models Tcl package. To add new objects to GDHE, the Tcl source file containing the definition
of a Tcl procedure drawing this object at the origin should be placed in the ${GDHE}/tcl Tcl
package.

9

2.3.1 Mobile robots

Hilare 2

The h2 procedure displays the Hilare 2 robot from LAAS. The procedure h2 platform { angle }
can be used as the value of the platform array to display the Hilare 2 laser scanner, oriented
along angle.

Hilare 2bis

The h2bis procedure displays the Hilare 2bis robot from LAAS. The arm { q1 q2 q3 q4 q5 q6 }
can be used as the value of the platform array to display the manipulator arm of Hilare 2bis,
with articular coordinates q1 . . . q6.

Junior

The junior procedure displays the Junior robots from Midi-Robots. The junior platform { angle }
can be used as the value of the platform array to display the junior laser scanner, oriented
along angle.

Lama

The lama procedure display the Lama robot made from VNII-Transmach. This procedure has
5 parameters corresponding to the 5 internal degrees of freedom of the robot: α1, α2, β1, β2

et β3. The lama platine { azi site } procedure can be used as the value of the platform array
to display the platform holding the stereo rig of lama, oriented among azi and site angles.

XR4000

The xr4000 procedure displays a XR4000 robot from Nomadic Technologies.

Scout

The scout procedure displays a Super-Scout robot from Nomadic Technologies.

10

Chapter 3

Basic objects

To make it possible to create complex 3D models, GDHE provides a set of predefined primitive
objects that can be used to build drawing procedures:

3.1 box� �
box x0 y0 z0 dx dy dz
 	
Draws a parallelepiped parallel to the axes. The (x0 y0 z0) point is placed at the center

of the lowest side.

3.2 cylinder

� �
cylinder x0 y0 z0 axis d1 [d2] length [facets]
 	
Draws a cylinder or a cone parallel to the axes. (x0 y0 z0) gives the center of the first

facet. axis is x, y or z to indicate which is the main axis. d1 and d2 are the diameters at
the two extremities. d2 can be omitted, in which case a cylinder of diameter d1 is produced.
Finally longueur is the length of the cylinder.

If d1 or d2 has a negative value, the facet at the corresponding end of the cylinder is not
drawn (and the corresponding diameter is ‖di‖).

facets defines the number of facets used to approximate the cylinder. The default value
is 12.

3.3 polygon

� �
polygon n x0 y0 ...
 	
Draws a polygon in the z = 0 plane. The coordinates of the n vertices are defined by

(x0 y0 x1 y1 . . . xn−1 yn−1)
The normal of this polygon is oriented towards positive z.

11

If it has been declared beforehand (see concave), the polygon can be concave, but its edges
should not cross themselves and there can be no double vertice (ie 2 vertices at exactly the
same coordinates). Should this happen, the result is undefined.

3.4 polyline

� �
polyline n x0 y0 z0 ...
 	
Draws a sequence of 3D line segments. The coordinates of the n vertices are given by

(x0 y0 x1 y1 . . . xn−1 yn−1).

3.5 prism

� �
prism n dx dy dz x0 y0 z0 ...
 	
Defines a prism which as the polygon with n vertices (x0 y0 z0) . . . as its basis and that

extends towards the (dx dy dz) vector.
If it has been declared beforehand (see concave), the polygon can be concave, but its edges

should not cross themselves and there can be no double vertice (ie 2 vertices at exactly the
same coordinates). Should this happen, the result is undefined.

3.6 sphere

� �
sphere x0 y0 z0 diam [facets]
 	
Draws a sphere centered on (x0 y0 z0) and with diameter diam.
facets defines the number of facets used to approximate the sphere. The default value is

12.

3.7 disk� �
disk x0 y0 z0 axis diam [facets]
 	
Defines a disk centered on (x0 y0 z0), whose normal is oriented towards one of the axis as

specified in axis (which ca be x, y or z and whose diameter is diam.
facets defines the number of facets used to approximate the disk. The default value is 12.

3.8 picture

� �
picture image [width height]
 	

12

Defines an image whose lower left corner will be in (0, 0) in the xOy plan from the Tk
image called image. A width (length along the x axis) and a height (length along the y axis)
can be optionnally defined.

This primitive should be used inside a display list for optimal performance. Otherwise it
can be extremly unefficient.

3.9 drawString

� �
drawString [x y z] string
 	
Draws the string given as argument starting at the specified coordinates or at the current

origin if no coordinates are given.
The string is drawn using the default OpenGL font.

3.10 repere

� �
repere [length]
 	
Draws a frame1 centered on the current origin. The length parameter defines the length

of the drawn axis. The default value is 1.

1repère in french

13

Chapter 4

The GDHE protocol

GDHE accepts display requests from the network. These requests are defined by a specific
protocol, inherited from a previous version of GDHE, that was dedicated to the STRADA
application, in the frame of the Martha project (and even another, much older version).

In the current version of GDHE the compatibility with this older version have been main-
tained. A new request was added, that allows to evaluate an arbitrary Tcl expression. This
new request is sufficient for all new applications that don’t want to use the data types and
representations from the Martha project.

The STRADA application is considering a multi-robots system in which robots are num-
bered from r0 to rn−1. There is a number of different robot types, also identified by numbers.
Each robot is equipped with an orientable platform with one degree of freedom.

These robots are evolving in a static environment, known in advance, but they can discover
and model new obstacles.

In this chapter, only the functions needed to used the new interface are described in
details.

4.1 Requests

All requests and associated data structures are described in the GDHE_packet.h header file.

The packet structure

This structure holds an union of all data types accepted by the GDHE requests, plus two
fields which and command that indicate respectively which objects a given command applies
to and what is the command sent by this request.

Eval expression

The eval expression request is used by a client of GDHE to make it evaluate an arbitrary Tcl
expression. It is a basic generic request that allows to extend the functionalities of GDHE,
by providing a mean to modify arbitrary parts of the model of the scene that is displayed.

4.2 Client library

Prototypes of the client library of GDHE are given in the GDHE_client_prot.h file.

14

Table 4.1: List of the main GDHE requests

Request Parameter Description
SELECT ROBOT TYPE int defines the kind of robot which
PLACE ROBOT position places the which robot at the given position
ERASE ROBOT - removes the which robot from the environment
PLACE WALLS v segment puts local obstacles around the which robot
ERASE WALLS - removes local obstacles from the which robot
PLACE RS TRAJ rs trajectory Draw an Reed&Sheep trajectory in front of the

which robot
ERASE RS TRAJ - removes the trajectory for robot which
UPDATE PER OBST polygon Puts a global obstacle in the environment
ERASE PER OBST - removes a global obstacle

EVAL EXPRESSION char * evaluates a Tcl expression

All these functions return TRUE is everything went OK or FALSE in case of an error.

4.2.1 Initialization

A client should start by creating a connection to the GDHE server. For this, it needs to know
the name of the machine on which GDHE is running.� �

extern int get connection (char *server name);
 	
4.2.2 Termination

When a client exits, it gets disconnected automatically from the GDHE server. It can be
useful to disconnect it explicitly, using the disconnect function.� �

extern int disconnect(void);
 	
4.2.3 Evaluating a Tcl expression

The main function of interest in the GDHE client is this one, that sends an expression to be
evaluated by the server, expressed as a C string (null terminated):� �

extern int eval expression (char *expr);
 	
The result of the evaluation is not available to the client, since the interface is designed

to be asynchronous, for performance reasons.

15

Chapter 5

The Tcl-OpenGL interface

5.1 Introduction

library in C library

file
Configuration

Tcl
interpreter

3D
display

Tcl objectObject

Display requests

Figure 5.1: Architecture of GDHE

GDHE uses the Tcl/Tk scripting language to program several elements of it’s user interface
and to describe the scenes to be displayed.

The Tcl interpreter which is running asynchronously, is augmented by libraries of functions
used to draw objects. These libraries are coded either in the C language or in Tcl itself. The
interpreter is initialized by a configuration file that can be adapted for each application.

The Tcl interpreter acts as a server an can receive requests from its clients on a TCP/IP
socket, or from the user who can send events through the graphical interface.

5.2 The display framework

GDHE offers a standard framework to display 3D data extracted either from a simulation or
from real world data. By convention it uses a direct frame in which the Oz axis represents

16

the vertical.
Several parameters available in OpenGL are fixed in GDHE in order to simplify the task

of describing of the objects to display.
Specifically, in the model view transform from OpenGL, the part corresponding to the

position of the observer relatively to the scene is represented by a polar transformation where
the coordinates of the target point, the distance, the elevation and the azimuth of the observer
are specified.

Also, the rendering model is kept simple. GDHE does not offer all the rendering param-
eters from OpenGL that could be used to obtain a more sophisticated (and more realistic)
rendering.

5.3 OpenGL primitives

GDHE extends Tcl with a set of functions that provide an access to OpenGL primitives.

5.3.1 Handling of 3D display windows

GDHE uses the Togl widget, developed by Brian Paul to interface OpenGL and Tcl/Tk.

togl� �
togl ident parameters...
 	
Creates an OpenGL widget (a new window) identified by ident. The Tcl options recognized

by togl are:

-width

-height specify the size of the window.

-ident associate an identifier with this widget. Warning ! all widgets that use the same ident
share the same observer position. By default this identifier is the empty string "".

-rgba specifies if the widget will use the RGBA mode

-double specifies if the widget will use a double-buffer

-depth specifies if the widget will use a depth buffer

-accum specifies if the widget will use an accumulation buffer

17

setObs� �
widget setObs -dist dist

-elev elev
-azi azi
-x x
-y y
-z z
-fovy fovy
-perspective|-ortho
-projMat matrix
-viewMat matrix
 	

Defines the position of the observer for the display window widget. The observer is looking
at the (xyz) target point and its position is given in polar coordinates by the distance dist
and the two angles of elevation elev and azimuth azi. fovy defines the horizontal field of view
of the observer.

-perspective specifies that a perspective projection will be used to render the scene. (This is
the default).

-ortho specifies that an orthogonal projection will be used to render the scene.

-projMat allows to specify explicitly the projection matrix, rather than having OpenGL com-
pute it from the individual parameters.

-viewMat allows to specify explicitly the OpenGL view matrix.

redraw� �
widget redraw [force]
 	
Triggers a redraw of the specified Togl widget. If the force parameter is omitted, the

redraw will be done as soon as possible, when the Tcl interpreter becomes idle. If the force
parameter is present and has a True value, the redraw is immediate, interrupting any other
activity in the Tcl interpreter.

For optimal performance of GDHE, it is strongly recommended to avoid setting the force
parameter.

dumpEps� �
widget dumpEps [-color] file
 	
Creates an encapsulated PostScript file with the contents of the OpenGL window widget.

If the -color option is present, the resulting PostScript file will use color, otherwise it will be
in grey shades.

This function overwrites silently file if it already exists.
The Dump EPS button of the standard user interface is using this function.

18

dumpPpm� �
widget dumpPpm [-color] file
 	
Creates an image file in the PPM or PGM format from the contents of the OpenGL

widget. If the -color option is present, the resulting file will be full color (PPM format),
otherwise it will use shades of grey (PGM format).

This function overwrites silently file if it already exists.

5.3.2 Frames

GDHE offers a simple interface with the functions to manage the stack of frames of OpenGL.

popMatrix� �
popMatrix
 	
Pops the current transform from the top of the stack.

pushMatrix� �
pushMatrix
 	
Pushes the current transform on the top of the stack.

rotate� �
rotate angle x y z
 	
Defines a rotation of value angle around the axis oriented along the (xyz) directing vector.

translate� �
translate dx dy dz
 	
Defines a translation.

loadIdentity� �
loadIdentity
 	
Set the current transformation matrix to identity.

19

loadMatrix� �
loadMatrix m11 . . .
 	
Explicitley sets the current transformation matrix with the 16 values given as parameters.

getMVMatrix� �
getMVMatrix
 	

multMatrix� �
multMatrix
 	

5.3.3 Color

Currently, the only programmable attribute of surfaces displayed by GDHE is the color.

color� �
color red green blue [alpha]
 	
Defines the current color. Red, green and blue are integers between 0 and 255. color defines

both the ambient color and the diffuse reflexion color of the objects. The optional parameter
alpha specifies the α channel value of the color. It is not really currently used by GDHE.
(Some preliminary support for transparencies exists, but it’s not really functional yet).

clearColor� �
clearColor red green blue [alpha]
 	
Defines the background color of the image. Red, green, blue and alpha are integers between

0 and 255.

5.3.4 Other random procedures

concave� �
concave option
 	
Indicates to prism- (prism §3.5) and polygon- (polygon §3.3) drawing primitives if the fol-

lowing objects are concave. If option is True, then objects can be concave and the tessellation
function of the GLU library will be used to decompose the polygons into triangles before dis-
playing them. If option is False the polygons are supposed to be convex and can thus be
rendered directly.

20

If concave false was asserted and a concave object is evaluated, the displayed result is
not predictable (and will generally look ugly).

cullFace� �
cullFace option
 	
Defines if OpenGL should remove the back faces from the objects. If option is True, then

back faces (oriented in the negative direction) are not displayed. If option is False, then back
faces are displayed.

setLights� �
setLights
 	
Re-reads the values of the Tcl variables that define the lighting of the scene. See § 5.4.2.

sleep� �
sleep milliseconds
 	
Suspends the execution for the specified number of milliseconds. Don’t use this command

for too long pauses, because the application is totally unresponsive during this pause.

5.3.5 Display lists

The functions described here provide an interface with the primitives to manipulate display
lists in OpenGL. They can be either used directly or through the more sophisticated object
interface (see §2.2.1) to declare and display complicated shapes in one operation.

newList� �
newList n
 	
Starts a new display list definition, numbered n. If there was already a display list with

this number, it will be lost and replaced by the newly created one.
Please note that GDHE renders display lists while creating them (meaning that the

OpenGL GL COMPILE AND EXECUTE parameter is set).

endList� �
endList
 	
Ends the definition of a display list.

21

callList� �
callList n
 	
Displays the specified display list.

genLists� �
genLists n
 	
Provides a mechanism to allocate unique display lists numbers. n specifies how many

indexes should be allocated. genLists returns the first allocated index. If n indexes where
requested, the n− 1 other are following in sequence.

deleteLists� �
deleteLists index [n]
 	
Frees the n display lists starting at index. If n is omitted, it defaults to 1.

5.4 Tcl procedures and variables

GDHE can be programmed with the Tcl language. Every GDHE application has to provide
two specific Tcl procedures that are called by GDHE to perform its initialization and the
drawings.

When GDHE starts, the ${GDHE}/tcl/setup.tcl file is read by the Tcl interpreter. This
file is part of the standard GDHE application and should generally not be modified in the
normal use of the standard GDHE application.

In order to customize the standard GDHE application, the .gdherc file can be used. This
file is read after setup.tcl, so that everything defined there can be overriden by .gdherc.

The setup.tcl file defines procedures and variables that are used aferwards by GDHE to
manage the display. This section describes those procedures and variables.

5.4.1 Procedures called by Tcl

setup� �
setup
 	
This Tcl procedule is called without parameters during GDHE startup, after reading the

configuration file (.gdherc). The aim of this procedure is to set up the GDHE graphical user
interface (create one or more OpenGL widgets and the associated control panels).

The standard GDHE application comes with a default setup procedure that opens one
OpenGL window and the default control panel described at § 2.1.1. This behaviour can be
altered by two global variables, gdheBase and gdheNoControlPanel. These variables can be set
in .gdherc.

22

gdheBase is the name of a Tk widget that will be the father of the main OpenGL window
(defaults to “.”). In order to encapsulate GDHE in a pre-existing Tk application, just set
gdheBase to the name of an existing Tk frame.

gdheNoControlPanel, if defined, prevents the creation of the standard control panel.

draw all� �
draw all widget
 	
This Tcl procedure is called each time GDHE needs to redraw the contents of an OpenGL

widget, either after the windowing system sent a redraw event or after an explicit call to the
redraw procedure. It gets the name of the widget to redraw as an argument.

5.4.2 Variables used by GDHE

Automatic redraw

By default GDHE redraws the contents of the OpenGL window automatically after receiv-
ing and handling each request of a client. This automatic redrawing is controlled by the
auto redisplay variable which has the default value of 1.

If a client application needs to send several requests without triggering a redraw, it can set
this variable to 0 and then explicitely call redraw for a specific window, or redrawAllWindows
for all GDHE windows.

Lighting

GDHE uses Tcl variables to specify the lighting parameters of the scene. Since OpenGL can
handle up to eight light sources, these variables are arrays in the Tcl namespace Gdhe::lights,
whose indexes are LIGHT0 to LIGHT7.

Gdhe::lights::position defines the position of the light sources. Each element of the array is
a list of three or four elements that define the (x y z) coordinates or the direction of
the source.

If the list is composed of three elements ou if the fourth element is equal to 0, then
the light source is placed at the infinity and the three first elements define the direction
of the source in the GDHE main frame. In this frame, (0 0 1) is a light source placed
vertically above the scene.

If the fourth element is not 0, the source is placed at the point with coordinates (x y z).

Gdhe::lights::ambient defines the color and intensity of the ambient component of each light
source.

Gdhe::lights::diffuse defines the color and intensity of the diffuse component (reflected by
the objets) of each light source.

Gdhe::lights::enabled allows to enable or disable each of the eight sources individually. Each
value is interpreted as a boolean.

23

Chapter 6

Extension modules

GDHE can be extended using Tcl modules that will provide new objects types or new proce-
dures.

The procedure to load a GDHE extension is the same as for any Tcl module. Place:� �
package require module name
 	

in the GDHE init file .gdherc before using the procedures and variables it defines.
This chapter describes the existing extension modules.

6.1 Numerical Terrain Models

The terrain module allows to display numerical terrain models.

6.1.1 readTerrain� �
readTerrain name filename
 	
Reads a terrain model in the file format used by LAAS EDEN experiments stored in the

file specified by filename and creates a terrain with name name in GDHE’s memory.
The color of each terrain vertice is obtained from the type associated in the data with this

vertice, used as an index in the mntColor Tcl array.

6.1.2 readTerrainGeroms� �
readTerrainGeroms name filename
 	
Same as readTerrain, execpt that the expected format of the terrain model is the one

produced by the GEROMS tools.

6.1.3 terrain� �
terrain name
 	

24

Draw the named terrain in the current scene. If no terrain with the given name exists, an
error is generated.

6.1.4 deleteTerrain� �
deleteTerrain name
 	
Destroys the terrain model named by name and frees the associated memory resources.

6.1.5 Terrains types

The mntColor array defines colors associated with each terrain type. Since the interpretation
of the possible terrain types values is leaved free to the user, it’s also the user’s role to associate
appropriate colors with the various possibles values for each vertice’s type.

Each element of this array should be an a triple { r g b } where eqch component between
0 and 255 corresponds to the red, green and blue components respectively.

6.2 Planet

The planet module allows to draw a sphere representing a planet : a picture of the surface is
projected as a texture on the outer surface of the sphere.

6.2.1 initPlanet� �
widget InitPlanet [-interior] [-radius radius] [filename]
 	
Computes in the specified OpenGL widget an object representing a planet, using the

picture stored in filename, or a default picture of the earth if filename is not specified. The
BUILTIN string can be used to refer to this image.

GDHE provide some texture files in the ${GDHE}/images directory:
earth.xbm simple monochrom model of the earth
earth.xpm a colorful view of the earth from satellite images
earthcld.xpm clouds from the high atmosphere of the earth

The -interior parameter indicates to OpenGL that the inner face of the sphere is to
used instead of the outer one. This is allows to create cloudy skys effects.

The -radius parameter specifies the radius of the sphere. The default is to create a sphere
of 10m of radius.

Since this function only defines the display list for on OpenGL widget, it should normally
never be called directly. Use the Tcl planet procedure instead.

6.2.2 drawPlanet� �
drawPlanet
 	
Draws the current planet in the current OpenGL window at position (0 0 0).
This function should normally not be called directly. Use the planet procedure instead, or

build you own procedure using planet as a model.

25

6.2.3 planet� �
planet name filename
 	
This procedure draws a planet. It is suitable as a value in the robots array. name gives a

name to the objet and file defints the name of the file containing the image to be used as a
texture.

Example:

set robots(earth) { planet earth $env(GDHE)/images/earth.xpm }
set pos(earth) { 0 0 0 }

6.2.4 Bugs

• There is a problem when handling multiple windows

• This should be standardized with other similar GDHE modules

6.3 Segkit

The segkit module displays a 2D environment model made of 2D line segments, using the
format used by the 2D mapping and localization sofware segkit. Each line segment is reprented
by a vertical wall of a given height over the z = 0 plane.

6.3.1 segkitMap� �
segkitMap variable filename
 	
This function returns a Tcl structure suitable to be stored into the walls structure of the

GDHE standard environment.
Example:

set pos(rep) { 0 0 0 }
set robots(rep) {}
segkitMap map /usr/local/robots/segkit/data/gs.map
set walls(rep,10) $map

6.4 Mpeg

The Mpeg module helps in producing animations in the MPEG-1 format from GDHE.
Capturing an animation cannot be done in real time, given the computing time needed to

compress the frames into MPEG streams. You need to be able to produce the images that
will compose the animation off-line.

The folling steps are needed to produce an animation:

1. Create the OpenGL window with the desirated size of the animation

2. Initialize the capture

26

3. Generate each image and capture it one by one,

4. End the capture

This module is currently more or less broken. The MPEG library used to compress the
images is not good enough to produce good quality results. A replacement modules exists, but
it is not finished and not documented either. You should bother the autors of GDHE to get it
finished if you need it !

27

Bibliography

[1] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi robot cooperation in the
martha project. IEEE Robotics and Automation Magazine, 1997.

[2] J. Nieder, T. Davis, and M. Woo. OpenGL Programming Guide, The Official Guide to
Learning OpenGL, Release 1. Addison Wesley, 1993.

[3] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[4] B. Welch. Practical Programming in Tcl and Tk. Prentice Hal, 1996.

28

Index

A
arm . 9
auto redisplay . 22
azimuth . 5

B
box . 10
BUILTIN . 24

C
callList . 21
cell boundaries . 7
cell vertices . 7
clearColor . 19
color . 19
concave . 19
cullFace . 20
cylinder . 10

D
deleteLists . 21
deleteTerrain . 24
desk . 8
disconnect . 14
disk . 11
display lists . 20
distance . 5
draw all . 22
drawPlanet . 24
drawString . 12
dumpEps . 17
dumpPpm . 18

E
elevation . 5
endList . 20
EPS dump . 5
eval expression . 14

F

fill . 5

G
GDHE . 3
Gdhe::lights . 22
Gdhe::lights::ambient 22
Gdhe::lights::diffuse 22
Gdhe::lights::enabled 22
Gdhe::lights::position 22
gdheBase . 21
gdheNoControlPanel 21
genLists . 21
get connection . 14
getMVMatrix . 19

H
h2 . 9
h2 platform . 9
h2bis . 9

I
InitPlanet . 24

J
junior . 9
junior platform . 9

L
lama . 9
lama platine . 9
LIGHT0 . 22
LIGHT7 . 22
lights . 5
line . 5
loadIdentity . 18
loadMatrix . 19

M
mntColor . 23, 24
Models . 8
Mpeg . 25

29

multMatrix . 19

N
newList . 20

O
object . 7
obstacle boundaries . 7
obstacle vertices . 7
orthogonal . 5

P
perspective . 5
PGM . 18
picture . 11
planet . 24, 25
platform . 6
polygon . 10
polyline . 11
popMatrix . 18
pos . 6
PostScript . 5
PPM . 18
prism . 11
pushMatrix . 18

Q
quit . 5

R
readTerrain . 23
readTerrainGeroms . 23
redraw . 17
redrawAllWindows . 8
repere . 12
robots . 6
rotate . 18
rs trajectory . 6

S
scout . 9
segkit . 25
segkitMap . 25
setLights . 20
setObs . 17
setup . 21
sleep . 20
sphere . 11

station boundaries . 7
station vertices . 7

T
target point . 5
terrain . 23
Togl . 16
togl . 16
translate . 18

W
walls . 6

X
xr4000 . 9

30

	Overview
	Starting GDHE
	The GDHE Tcl package
	Init file
	Using the reader

	The standard GDHE application
	Description of a standard environment
	The user interface
	Describing the scene

	Other Tcl procedures
	object
	redrawAllWindows

	Pre-defined models
	Mobile robots

	Basic objects
	box
	cylinder
	polygon
	polyline
	prism
	sphere
	disk
	picture
	drawString
	repere

	The GDHE protocol
	Requests
	Client library
	Initialization
	Termination
	Evaluating a Tcl expression

	The Tcl-OpenGL interface
	Introduction
	The display framework
	OpenGL primitives
	Handling of 3D display windows
	Frames
	Color
	Other random procedures
	Display lists

	Tcl procedures and variables
	Procedures called by Tcl
	Variables used by GDHE

	Extension modules
	Numerical Terrain Models
	readTerrain
	readTerrainGeroms
	terrain
	deleteTerrain
	Terrains types

	Planet
	initPlanet
	drawPlanet
	planet
	Bugs

	Segkit
	segkitMap

	Mpeg

